論文 再生骨材を使用した高流動高靱性コンクリートの収縮ひずみ低減

安西 拓巳^{*1}·渡部 憲^{*2}

要旨:本研究では、再生骨材を使用した高流動高靭性コンクリートの収縮ひずみ低減を目的とし、膨張材お よび収縮低減剤を適用した場合の影響について検討するため、一軸圧縮試験、三等分点曲げ試験および自由 膨張収縮試験を実施した。その結果、再生骨材を使用した高流動高靭性コンクリートの収縮ひずみは、単位 膨張材量を80kg/m³とすることで大幅に低減でき、その場合においても、再生骨材を使用した高流動高靭性 コンクリートの圧縮強度は、膨張材および収縮低減剤不使用の場合を上回る等の知見が得られた。 キーワード:再生骨材、高靱性コンクリート、高流動、収縮ひずみ

1. はじめに

これまでに、既存の繊維補強コンクリートをはるかに 上回る性能を有する高靱性セメント複合材料(以下, DFRCCと略記)が開発されている¹⁾。DFRCCとは、セメ ント系材料を繊維で補強した複合材料で、曲げ応力下に おいて複数ひび割れ特性を示し、曲げ、引張、圧縮破壊 時の靭性が大幅に向上した材料である¹⁾。この材料は, 一般的なコンクリートの脆性的な性質を克服しているこ とから、コンクリート系構造要素の力学特性や耐久性の 大幅な向上が見込めるほか従来のセメント系材料に代わ る高性能な補修用材料、衝撃緩衝材料など、新しい各種 の用途が期待されている。しかし、実際にDFRCCを使 用した施工例は報告されているものの²⁾,その数は未だ に少ないのが現状である。その理由として、施工性の問 題や、他の材料と比較してコストが高い、マトリックス として主にモルタルやセメントペーストを使用している ため,一般的なコンクリートと比較して水和熱や乾燥収 縮による影響が大きい等の問題が挙げられる。今後、 DFRCCの利用を推進していくためには,既存の材料の改 良を含む新しい材料の開発が必要であると考えている。

ところで現在,生産活動を実施するにあたり,地球環 境問題に対する取り組みは重要な課題である。コンク リートの分野においても,解体コンクリート塊から取り 出した再生骨材を使用して再びコンクリートを製造す る,再生骨材コンクリートの研究が活発に実施されてい る^{例えば,3}。今後,コンクリートのリサイクルを更に積極 的に推し進めるためにも,再生骨材の新たな有効利用技 術を開発しておく必要がある。

以上のような背景から、地球環境に配慮した、高性能 なコンクリートの実現を目指して、著者らの一人は、混 和材としてフライアッシュ、骨材として再生骨材を使用 した高流動高靭性コンクリートを開発した⁴⁾。以下、高 流動高靭性コンクリート(High-Fluidity Ductile-Fiber-Reinforced Concrete)をHFDFRC、再生骨材を使用した HFDFRCをR-HFDFRCと略記する。既往の研究では,水 結合材比を50%としたR-HFDFRCの乾燥収縮ひずみは, 乾燥材齢6ヶ月において25×10⁴以上となることがわ かっている⁵⁾。JASS 5によれば,一般的なコンクリート (計画供用期間の級が長期および超長期)の乾燥収縮ひず みは,乾燥材齢6ヶ月において8×10⁴以下と規定されて いる⁶⁾。したがって,次の段階として,R-HFDFRCの収 縮ひずみ低減に関する検討が必要である。一般的なコン クリートの収縮ひずみ低減手法として,膨張材や収縮低 減剤の使用が挙げられる。超高強度ひずみ硬化型セメン ト系材料や合成短繊維を混入した高強度軽量骨材コンク リートへの,膨張材および収縮低減剤の適用性に関する 研究報告もなされている^{7,8)}が,今後,DFRCCへの適用 性に関する研究事例を更に蓄積しておく必要がある。

以上より、本研究では、R-HFDFRCの収縮ひずみ低減 を目的に、膨張材および収縮低減剤を使用したR-HFDFRCの強度特性および膨張収縮特性について検討を 行った。また、比較用として、天然骨材を使用した HFDFRC(以下, N-HFDFRCと略記)についても検討を 行った。

2. 実験概要

本研究では,**表**-1に示す各種HFDFRCの一軸圧縮試 験,三等分点曲げ試験および自由膨張収縮試験(表中の 丸印)を行った。

(1) 使用材料

本研究で使用した再生骨材(R)および天然骨材(N)の物 性一覧を,**表-2**に示す。再生粗骨材の品質はM相当(JIS A 5021:2018およびJIS A 5022:2018 附属書Aにより判断) のものを使用した。また,再生細骨材の中目と細目の混 合割合(質量比)は,4:6(混合砂の絶乾密度:2.44g/cm³,吸 水率:4.16%)であり,品質はM相当(前述と同様に判断)で ある。天然細骨材の砕砂と山砂の混合割合は,再生細骨 材と同様である。セメントは,普通ポルトランドセメン

*1 東海大学大学院 工学研究科建築土木工学専攻 (学生会員)

*2 東海大学 工学部建築学科教授 博士(工学) (正会員)

ト(密度:3.16g/cm³)を使用し、繊維は、PVA繊維(V,径: 0.2mm、長さ:18mm、弾性係数:27kN/mm²、引張強度: 975N/mm²)および鋼繊維(S,径:0.55mm、長さ:30mm、 弾性係数:210kN/mm²、引張強度:1145N/mm²)を使用し た。混和材料は、高性能AE減水剤、分離低減材、フラ イアッシュII種(密度:2.29g/cm³)、膨張材(EX)および収 縮低減剤(SRA)を使用した。EXは、コンクリートに一般 的に使用されている⁹⁾石灰系(LB,密度:3.14g/cm³)とカ ルシウム・サルフォ・アルミネート系(CSA,密度:2.93 g/cm³)の2種類を単独または混合使用した。SRAは、ポ リオキシエチレンアルキルエーテル系(密度:1.01g/cm³) を使用した。

(2) 配(調)合

代表的なHFDFRCの配(調)合を表-3に示す。本研究 では、各種HFDFRCの水結合材比(W/B)を50%、細骨材 率を85%とした。また、同一骨材で単位水量が概ね同じ となるような配(調)合とし、目標スランプフローは、 65cmとした。繊維は、VとSを混合使用し、繊維体積混 入率を3%、VとSの繊維体積混合比(V:S)を7:3とした。 フライアッシュのセメント(EXを使用した場合はEX量を 加える)置換率は、20%とした。EXは単位量で使用し、 単位EX量は0、40、80および120kg/m³とした。EX混合 比(LB:CSA)は、10:0、0:10および5:5とした。SRAは、結 合材質量に対して0および2%を水置換で使用した。な お、N-HFDFRCは比較用であり、単位EX量は0および 80kg/m³、EX混合比は10:0および0:10とした。

2.1 一軸圧縮試験

ー軸圧縮試験は、以下に示す手法^{例えば、4)}により行った。載荷は、2000kN耐圧試験機を使用して行った。試 験体は、100 φ ×200mmの円柱試験体とし、各要因6体製 作した。計測項目は、荷重、コンプレッソメータによる 試験体中央部の縦・横ひずみおよび載荷盤間変位とし た。各データは、データロガーを使用して取り込んだ。 試験体は、打込み後2日(湿布養生)で脱型し、試験時(材 齢28日)まで標準養生とした。なお、圧縮破壊エネル ギー(G_{Fc})は、文献^{10),11}に示す手法により算出した。

2.2 三等分点曲げ試験

三等分点曲げ試験は、以下に示す手法^{例えば、4)}により 行った。載荷は、100kN AUTOGRAPH型精密万能試験 機を使用して行い、クロスヘッド速度を0.2mm/minに制 御した。試験体は100×100×400mmの角柱試験体とし、 鋼製型枠を使用して各要因6体製作した。三等分点曲げ 試験は、文献¹²⁾付属書(参考)に準じて行い、計測項目 は、荷重、スパン中央部のたわみおよび曲率とした。各 データは、データロガーを使用して取り込んだ。また、 試験後に、純曲げ区間内に発生したひび割れ本数を目視 により計測し、本研究ではこれをひび割れ本数とした。

試験体名	骨材種	水結 合材 比	細骨 材 合 材 比	細骨 材率	繊 体 混 率	単位 膨張 材量 EX	膨張 材混 合比	収縮 減 使 率	自膨収
	類	W/B	S/B	s/a	V _f	$(kg (m^3))$	(LB	(Bwt.	試験
		C	6)	(VO)	L.%)	/Ш)	·(SA)	×%)	
R-EX0						0	0:0	0	0
R-EX0-SRA2						-		2	0
R-EX40-10:0						40	10:0		-
R-EX40-0:10						40	0:10		-
R-EX80-10:0	R	50	65	85	3	80	10:0	0	0
R-EX80-0:10							0:10		0
R-EX80-5:5							5:5		0
R-EX80-10:0-SRA2							10:0	0	0
R-EX80-0:10-SRA2							0:10	2	0
R-EX120-10:0						100	10:0		-
R-EX120-0:10						120	0:10		-
N-EX0						0	0:0	0	-
N-EX80-10:0	Ν					00	10:0		-
N-EX80-0:10						80	0:10		-

衣一2 育材の物性一見									
骨材種類		最大寸法 (mm)	表乾密度 (g/cm ³)	絶乾密度 (g/cm ³)	吸水率 (%)	粗粒率			
	粗骨材		10	2.53	2.44	3.68	6.02		
R 細骨材	细母社	日日	2.5	2.55	2.46	3.75	2.34		
	細目	0.6	2.53	2.43	4.43	1.17			
	粗骨材	砕石	10	2.62	2.58	1.49	5.94		
N 細骨材	砕砂	5.0	2.63	2.60	1.32	3.00			
	和"月12	山砂	1.2	2.59	2.53	2.16	1.61		
ま り 少ま的な町(調)合									

百万

0

-3 代表的な配(調)を

	単位量(kg/m ³)								高			
			新	吉合友	† B				繊	維		性
試験体名	骨材種類	水*1	セメント	フライアッシ	膨張材	粗 骨 材 ^{*2}	糸 骨 杉	田 骨 才 ^{*3}	PVA 繊維	鋼 繊維	分離低減剤	能 AE 減 水 剤 (Bwt.
		W	С	ユ	EX	G	S1	S2	V	S		×%)
R-EX0		407	651	163	0	93.2	211	317			15.6	
R-EX80-10:0	R	407	571	163	80.0	93.4	212	318			13.7	
R-EX80-0:10		406	569	162	80.0	93.2	211	317	27.3	70.7	14.2	0.5
N-EX0	N	410	656	164	0	94.6	213	320			13.8	
N-EX80-10:0	11	410	576	164	80.0	94 7	213	320			12 7	

*1:収縮低減剤および高性能AE減水剤は単位水量に含める。 *2:再生骨材(R) の場合, G:再生粗骨材である。天然骨材(N)の場合, G:碎石である。 *3:再 生骨材(R)の場合, S1:中目, S2:細目である。天然骨材(N)の場合, S1:砕砂, S2:山砂である。

試験体は打込み後2日(湿布養生)で脱型し,試験時(材齢 28日)まで標準養生とした。なお,曲げ靱性は繊維補強 コンクリートの曲げ強度および曲げタフネス試験方法¹³⁾ を参考にして評価した。

曲げタフネスは曲げ靱性係数で表され、以下の式によ り求めた。

$$\overline{f}_{b} = \frac{T_{b}}{\delta_{lb}} \times \frac{l}{b \cdot h^{2}}$$
(1)

ここに、 f_b :曲げ靱性係数(N/mm²)、 T_b :原点から δ_{tb} までの曲線下の面積(N・mm)、 δ_{tb} :スパン中央部のたわみ (mm)、l:スパン(mm)、b:破壊断面の幅(mm)、h:破壊断 面の高さ(mm)である。

なお、本研究では、 $\bar{f}_b \epsilon \delta_{tb}$ が7.5mmとなる時点での値 とした。

2.3 自由膨張収縮試験

自由膨張収縮試験は、以下に示す手法により行った。 試験体は、100×100×400mmの角柱試験体とし、各要因2 体製作した。計測項目は、試験体内部の中央に設置した 検長100mmの埋込み型ひずみゲージによる試験体長手 方向の自由膨張収縮ひずみおよび熱電対による試験体温 度とした。型枠の内側と試験体との摩擦抵抗を低減する ため、型枠の内側にはテフロンシート(厚さ:0.1mm)を2 枚重ねて敷設し、その間にシリコンオイルを塗布し た。試験体は、打込み後2日(湿布養生)で脱型した。そ の後、標準養生とし、材齢7日で恒温恒湿室内(20℃, 60%RH)での空中養生とした。

3. 結果と考察

表-4に、実験により得られた各種HFDFRCのフレッシュ試験結果、単位容積質量および曲げ試験時のひび 割れ本数を示す。

表-4によれば、各種HFDFRCのスランプフローは、 62.5~69.5cmとなっており、EX使用量、EX種類の相 違、EX混合使用、SRAの有無および骨材種類の相違に 係らず、材料分離を生じることなく、目標スランプフ ロー65cmを、概ね、達成できた。

3.1 強度試験結果

(1) 一軸圧縮試験結果

図-1(a)および(b)に,一軸圧縮試験により得られた 各種HFDFRCの圧縮強度(F_c)および G_{F_c} -単位EX量関係 を示す。なお,図中には単位EX量を変化させた場合の 結果に対する二次曲線近似式(図中の太曲線で,R-EX0 を通るように近似)も併せて示す(後述,図-2も同様)。

まず,図-1(a)によれば、単位EX量を80kg/m³とし、 EX混合比を変化させた場合のR-HFDFRCのF_c(図中のR-10:0, R-0:10およびR-5:5)は、EX0と比較して増加(1.80 ~4.51%)している。N-HFDFRC(図中のN)においても, 同様の傾向が確認できる(N-EX0と比較して2.13~3.19% 増加)。また、単位EX量を変化させた場合のR-HFDFRC のF_c(図中のR-10:0およびR-0:10)は、単位EX量80kg/m³ま では、EX0と比較して増加(1.29~6.39%)しているが、単 位EX量が120kg/m³まで増加すると、EX0と比較して低 下(5.17~18.6%)している。例えば、文献¹⁴⁾によれば、 EXとしてCSAを使用した場合のコンクリートに関し て、単位EX量の増加に伴うFcの低下傾向が示されてい る。しかし, R-HFDFRCのF_cは, 単位EX量を80kg/m³と した場合においても、EX0を上回っている。また、単位 EX量を120kg/m³とした場合, F_c はEX0と比較して低下す るものの、その低下量は5.17~18.6%である。この理由 として、R-HFDFRCは、一般的なコンクリートと比較し て単位セメント量が多いことや繊維による補強効果の 影響等が考えられるが、今後、詳細な検討を要する。 ここで、SRAを使用した場合(図中のSRA2)について注 目すると、R-HFDFRCのF_cは、EXの有無に係らず、EX0 と比較して低下(4.12~13.3%)している。

以上, R-HFDFRCの F_c は, EXのみを使用し, 単位EX 量を80kg/m³とした場合, EX種類の相違やEX混合使用 に係らず, EX0を上回っていることがわかった。また,

	衣 4 竹↑	村住一見			
Three LL An	スランプフロー	単位容積質量	曲げ試験時の		
試験体名	(cm)	(g/cm^3)	ひび割れ本数		
R-EX0	67.5	2.05	4		
R-EXO-SRA2	67.5	2.05	5		
R-EX40-10:0	66.0	2.05	3		
R-EX40-0:10	62.5	2.06	5		
R-EX80-10:0	67.5	2.06	6		
R-EX80-0:10	67.0	2.05	6		
R-EX80-5:5	67.5	2.04	5		
R-EX80-10:0-SRA2	66.0	2.05	4		
R-EX80-0:10-SRA2	66.0	2.04	4		
R-EX120-10.0	65.0	2.05	4		
N-FY0	69.5	2.01	5		
N-EX80-10:0	66.5	2.08	4		
N-EX80-0:10	66.5	2.06	5		
	R-10:0 - R-10:0-SRA2 - N-10:0 -	−o−− R−0∶10 - o R−0∶10−SRA2 - × N−0∶10	<u> </u>		
$\begin{array}{c} \hline F_{c} = -0.00\\ + 0.0445 \\ R^{2} = \\ \hline F_{c} = -0.00\\ 0.108 \\ R^{2} = \\ R^{2} $	0:0 近似 00458 (EX量) ² (EX量) + 28.8 <u>0.762</u> :10 近似 126 (EX量) ² + X量) + 28.8 <u>0.986</u>	$ \begin{array}{c} \hline G_{F_c} = -0 \\ + 0.105 \\ R_{F_c} = -0 \\ + 0.3070 \\ F_{F_c} = -0 \\ F_{F_c} = -0 \\ F_{F_c} = -0 \\ R_{F_c} = -0 \\ $	2-10:0 近似 .000815 (EX量) ² (EX量) + 41.8 ² = 0.677 -0:10 近似 .000312 (EX量) ² 0 (EX量) + 41.8 ² = 0.588		
Cumy N) 一型 20 0 40 単位膨張材 (a) 王縮	80 120 量 (kg/m ³) 确度	 (1) 50 (1) 50	ミー 80 120 林量(kg/m ³) 東エネルギー		
	図_1 耳綱	家試驗結里	x		
	<u>ビュ 「 」</u> 八上州	ᆸᆸᄮᄤᅎᆘᆸᅎ			

++ 业1 #= #+ ___ 臣生

SRAを使用した場合のR-HFDFRCの F_c は, EX0と比較して低下するものの,その低下量は4.12~13.3%であることがわかった。

次に、図-1(b)によれば、単位EX量を80kg/m³とし、 EX混合比を変化させた場合のR-HFDFRCの G_{Fc} (図中のR-10:0, R-0:10およびR-5:5)は、EX0と比較して増加(3.79 ~11.0%)している。N-HFDFRC(図中のN)においても、 同様の傾向が確認できる(N-EX0と比較して1.44~3.52% 増加)。また、単位EX量を変化させた場合の G_{Fc} (図中の R-10:0およびR-0:10)は、単位EX量80kg/m³までは、EX0 と比較して増加(0.842~11.0%)しているが、単位EX量が 120kg/m³まで増加すると、EX0と同程度(-0.652~ +0.951%)となっている。ここで、SRAを使用した場合 (図中のSRA2)について注目すると、R-HFDFRCの G_{Fc} は、EXの有無に係らず、EX0と比較して低下(2.43~ 7.29%)している。

以上, R-HFDFRCの G_{Fc} は, EXのみを使用し,単位EX 量を80kg/m³とした場合, EX種類の相違やEX混合使用 に係らず, EX0を上回っていることがわかった。また, SRAを使用した場合のR-HFDFRCの G_{Fc} は, EX0と比較 して低下するものの,その低下量は2.43~7.29%である ことがわかった。

なお,単位EX量を変化させた場合の結果(F_cおよび G_{Fc})に対して二次曲線近似を行った結果,図-1中に示 す決定係数(\mathbf{R}^2)の近似式が得られ、更なる検討を要する が二次曲線近似の可能性が示唆された。また、一軸圧縮 試験結果について、以下のことを考えている。EX種類 (混合使用した場合も含む)により内部組織構造の形成過 程は異なるものと思われるが、単位EX量が80kg/m³まで は組織を緻密化させるため(繊維による内部拘束も考え られる)、EX0と比較して F_c および G_{Fc} が増加する。しか し、単位EX量が120kg/m³になると膨張作用により組織 の緻密さが失われるため、EX0と比較して F_c は低下、 G_{Fc} の低下は、細孔構造の粗大化や強度発現の遅延等 の理由が考えられ、今後、詳細な検討を要する。

(2) 三等分点曲げ試験結果

図-2(a)および(b)に、三等分点曲げ試験により得られた各種HFDFRCの曲げ強度(f_b)および $\bar{f_b}$ -単位EX量関係を示す。

まず、図-2(a)によれば、単位EX量を80kg/m³とし、 EX混合比を変化させた場合のR-HFDFRCの f_b (図中のR-10:0, R-0:10およびR-5:5)は、EX0と比較して低下(0.270 ~3.10%)している。N-HFDFRC(図中のN)においても、 同様の傾向が確認できる(N-EX0と比較して2.82~2.98% 低下)。また、単位LB量を変化させた場合のR-HFDFRC Of_b (図中のR-10:0)は、EX0と比較して低下(2.49~8.50%) するものの、単位LB量の増加に伴う f_b の低下は見られな い。単位CSA量を変化させた場合のR-HFDFRC Of_b (図中 のR-0:10)は、単位CSA量40kg/m³では、EX0と比較して 増加(1.71%)しているが、それ以降は、単位CSA量の増 加に伴い低下(EX0と比較して0.270~13.0%)している。 ここで、SRAを使用した場合(図中のSRA2)について注目 すると、R-HFDFRC Of_b は、EXの有無に係らず、EX0と 比較して低下(3.01~9.46%)している。

以上、R-HFDFRCの f_b は、EXのみを使用し、単位EX 量を80kg/m³とした場合、EX種類の相違やEX混合使用に 係らず、EX0と比較して低下するものの、その低下量は 0.270~3.10%であることがわかった。また、SRAを使用 した場合のR-HFDFRCの f_b は、EX0と比較して低下するも のの、その低下量は3.01~9.46%であることがわかった。

次に、図-2(b)によれば、単位EX量を80kg/m³とし、 EX混合比を変化させた場合のR-HFDFRCの \bar{f}_{b} (図中のR-10:0, R-0:10およびR-5:5)は、EX0と比較して増加(3.88 ~6.97%)している。N-HFDFRC(図中のN)においても、 同様の傾向が確認できる(N-EX0と比較して1.08~2.04% 増加)。また、単位LB量を変化させた場合のR-HFDFRC の \bar{f}_{b} (図中のR-10:0)は、単位LB量40kg/m³では、EX0と比 較して低下(12.7%)するものの、単位LB量の増加に伴う の低下は見られない。単位CSA量を変化させた場合のR-HFDFRCの \bar{f}_{b} (図中のR-0:10)は、単位CSA量80kg/m³まで

は、EX0と比較して増加(6.97~9.29%)しているが、単位 EX量が120kg/m³まで増加すると、EX0と比較して低下 (18.3%)している。ここで、SRAを使用した場合(図中の SRA2)について注目すると、R-HFDFRCの \bar{f}_b は、EXの有無 に係らず、EX0と比較して低下(5.30~7.30%)している。

以上, R-HFDFRCの \bar{f}_i は, EXのみを使用し, 単位EX 量を80kg/m³とした場合,EX種類の相違やEX混合使用に 係らず, EX0を上回っていることがわかった。また, SRAを使用した場合のR-HFDFRCの f_{b} は、EX0と比較し て低下するものの、その低下量は5.30~7.30%であるこ とがわかった。これらのことから、R-HFDFRCは、EX 使用量、EX種類の相違、EX混合使用およびSRAの有無 に係らず、 \bar{f}_{b} が3.5N/mm²以上となっており、一般的な コンクリートと比較して優れた曲げ靭性を有しているこ とがわかった。また,前掲,表-4によれば,R-HFDFRCのひび割れ本数は、EX使用量、EX種類の相 違, EX混合比およびSRAの有無に係らず, 3~6本と なっている。文献12)によれば、曲げ応力下で独立した複 数ひび割れの発生とは,最大荷重に達する以前に供試体 の純曲げ区間内に、目視で確認できる2本以上の独立し たひび割れが発生する場合を指すとしている。本研究で は、試験後に、純曲げ区間内に発生した独立したひび割 れ本数を目視により計測し, ひび割れ本数としている が、最大荷重に達する以前に複数ひび割れを確認してお り, R-HFDFRCは, 十分なひび割れ分散性を有している ことがわかった。即ち、本研究の範囲において、EXや SRAを使用した場合においても、R-HFDFRCは、優れた 曲げ靭性およびひび割れ分散性を有していることがわ かった。

なお、単位LB量を変化させた場合は明確な傾向が確認できなかったが、単位CSA量を変化させた場合の結果 (f_b および \bar{f}_b)に対して二次曲線近似を行った結果、**図**-2中に示す \mathbf{R}^2 の近似式が得られ、更なる検討を要するが二次曲線近似の可能性が示唆された。また、三等分点曲げ試験結果について、EX種類(混合使用した場合も含む)等による内部組織構造の形成過程の相違等が、 f_b および \bar{f}_b を決定付ける繊維の架橋性能に影響を及ぼしたものと考 えているが、今後、詳細な検討を要する。

3.2 自由膨張収縮試験結果

図-3(a)および(b)に,自由膨張収縮試験により得られたR-HFDFRCの自由膨張収縮ひずみー材齢関係を示す。ここでは,打ち込み直後を初期値とした。

まず, EX混合比の影響(図-3(a))について注目する と、材齢7日における自由膨張ひずみは、LBとCSAを混 合使用(R-EX80-5:5, 24.5×10⁻⁴)>CSA单独使用(R-EX80-0:10, 23.6×10⁻⁴)>LB単独使用(R-EX80-10:0, 8.22×10⁻⁴) >EXおよびSRA不使用(R-EX0, 1.83×10⁻⁴)となってい る。今回使用したEX(同一使用量)の場合,LBとCSAを 混合使用した場合の自由膨張ひずみが最大となった。文 献⁹⁾によれば,LBとCSAは,混合使用することにより, 従来よりも少ない添加量で同等の膨張性能を得られると されており, R-HFDFRCにおいてもこのようなことが影 響したものと思われる。また、材齢63日における自由収 縮ひずみは、EXおよびSRA不使用(R-EX0, 20.8×10⁻⁴) >LB単独使用(R-EX80-10:0, 8.65×10⁻⁴, R-EX0と比較し て58.5%低減)>CSA単独使用(R-EX80-0:10, 膨張側で4.78 ×10⁻⁴, R-EX0と比較して123%低減)>LBとCSAを混合使 用(R-EX80-5:5, 膨張側で6.94×10⁻⁴, R-EX0と比較して 133%低減)となっており、材齢7日における自由膨張ひ ずみの影響を受けていることがわかった。

次に, SRAの影響(図-3(b))について注目すると, 材 齢7日における自由膨張ひずみは、CSAとSRAを同時使 用(R-EX80-0:10-SRA2, 34.3×10⁻⁴)>CSAを単独使用(R-EX80-0:10, 23.6×10⁻⁴)>LBとSRAを同時使用(R-EX80-10:0-SRA2, 11.6×10⁻⁴)>LB単独使用(R-EX80-10:0, 8.22 ×10⁻⁴)>EXおよびSRA不使用(R-EX0, 1.83×10⁻⁴)>SRAを 単独使用(R-EX0-SRA2, 0.829×10⁻⁴)となっている。材 齢7日における自由膨張ひずみは、EXとSRAを同時使用 することで、EXのみを使用した場合と比較して増加 (40.6~45.3%)することがわかった。また、材齢63日にお ける自由収縮ひずみは、EXおよびSRA不使用(R-EX0, 20.8×10⁻⁴)>SRA単独使用(R-EX0-SRA2, 14.2×10⁻⁴, R-EX0と比較して32.1%低減)>LB単独使用(R-EX80-10:0, 8.65×10⁻⁴, R-EX0と比較して58.5%低減)>LBとSRAを同 時使用(R-EX80-10:0-SRA2, 0.350×10⁻⁴, R-EX0と比較 して98.3%低減)>CSA単独使用(R-EX80-0:10, 膨張側で 4.78×10⁻⁴, R-EX0と比較して123%低減)>CSAとSRAを 同時使用(R-EX80-0:10-SRA2, 膨張側で20.7×10⁻⁴, R-EX0と比較して200%低減)となっている。EXとSRAを同 時使用することで、材齢63日にける自由収縮ひずみは、 大幅に低減(R-EX0と比較して20.5×10⁻⁴~41.6×10⁻⁴, 98.3~200%)できることがわかった。

図-4(a)および(b)に、自由膨張収縮試験により得ら

れたR-HFDFRCの乾燥収縮ひずみ-乾燥材齢関係を示 す。ここでは、乾燥開始時を初期値とし、初期値からの ひずみを乾燥収縮ひずみとした。なお、一部の結果に対 する双曲線近似式(文献¹⁵⁾の収縮ひずみ予測式を簡略化 した式、図中の灰曲線および橙曲線)も併せて示す。

まず, EX混合比の影響(図-4(a))について注目する と, 乾燥材齢56日における乾燥収縮ひずみは, EXおよ びSRA不使用(R-EX0, 22.7×10⁴)>CSA単独使用(R-EX80 -0:10, 18.8×10⁴, R-EX0と比較して16.9%低減)>LBと CSAを混合使用(R-EX80-5:5, 17.7×10⁴, R-EX0と比較 して22.0%低減)>LB単独使用(R-EX80-10:0, 16.8×10⁴, R-EX0と比較して25.9%低減)となっている。乾燥開始時 を初期値とした場合, EXを使用することで,乾燥収縮ひ ずみはR-EX0と比較して小さくなるものの, CSA単独使 用(R-EX80-0:10)の乾燥収縮ひずみは,他の場合(EX使用) と比較して大きく(6.50~12.1%)なることがわかった。

次に、SRAの影響(図-4(b))について注目すると、乾 燥材齢56日における乾燥収縮ひずみは、EXおよびSRA 不使用(R-EX0、22.7×10⁴)>CSA単独使用(R-EX80-0:10、18.8×10⁴、R-EX0と比較して16.9%低減)>LB単独 使用(R-EX80-10:0、16.8×10⁴、R-EX0と比較して25.9% 低減)>SRA単独使用(R-EX0-SRA2、15.0×10⁴、R-EX0と 比較して33.8%低減)>CSAとSRAを同時使用(R-EX80-0:10-SRA2、13.5×10⁴、R-EX0と比較して40.5%低減) >LBとSRAを同時使用(R-EX80-10:0-SRA2, 11.9×10⁴, R-EX0と比較して47.4%低減)となっている。EXとSRAを 同時使用することで乾燥材齢56日にける乾燥収縮ひずみ は大幅に低減できる(R-EX0と比較して9.17×10⁴~10.8 ×10⁴, 40.5~47.4%)ことがわかった。

なお、一部の結果に対して双曲線近似を行った結果、 図-4中に示すR²の近似式が得られ、更なる検討を要す るが双曲線近似の可能性が示唆された。

以上,R-HFDFRCの各種収縮ひずみは,EXやSRAを 使用することで大幅に低減できることがわかった。ただ し、単位EX量を80kg/m³とした場合,LBを単独使用した 場合と比較して,CSAを単独使用した場合の自由膨張ひ ずみおよび乾燥収縮ひずみが大きく,打ち込み直後から の体積変化が大きい。また,SRAの使用は、乾燥収縮ひ ずみの低減やEXと同時使用した際の自由膨張ひずみの 増加に対して有効であるが,前述(3.1 強度試験結果参 照)の通り,R-HFDFRCの各強度や破壊靭性を低下させ る。そのため、収縮ひずみ低減の目標値や必要強度等を 鑑み,配(調)合を決定する必要があると考える。

4. まとめ

本研究の範囲において、得られた知見を以下に示す。

- R-HFDFRCの圧縮強度は、単位膨張材量を80kg/m³とした場合、膨張材および収縮低減剤不使用の場合と 比較して増加する。また、単位膨張材量を120kg/m³ とした場合の圧縮強度は、膨張材および収縮低減剤 不使用の場合と比較して低下するものの、その低下 量は5.17~18.6%である。
- 2) 膨張材や収縮低減剤を使用した場合においても、R-HFDFRCは、優れた曲げ靭性およびひび割れ分散性 を有している。
- 3) R-HFDFRCの自由収縮ひずみ(材齢63日)および乾燥 収縮ひずみ(乾燥材齢56日)は、膨張材と収縮低減剤 を同時使用することで大幅に低減できる。

今後, R-HFDFRCのひび割れ分散性を踏まえ, 膨張ひ ずみも考慮し, 乾燥材齢6ヶ月における収縮ひずみが16 ×10⁴程度以下となるよう検討を進める予定である。

謝 辞

本研究の一部はJSPS科研費(課題番号:18K04442,代 表者:渡部憲)の助成を受けて行われたものである。

参考文献

 高靭性セメント複合材料の性能評価と構造利用研究 委員会:高靭性セメント複合材料を知る・作る・使 う,高靭性セメント複合材料の性能評価と構造利用 研究委員会報告書,日本コンクリート工学協会, pp.1-10, 2002.1

- 高強度・高靱性コンクリート利用研究委員会:高強 度・高靱性コンクリート利用研究委員会報告書,日 本コンクリート工学協会,pp.74-85,2009.3
- 3) 日本建築学会:再生骨材を用いるコンクリートの設計・製造・施工指針(案), 211pp., 2014.10
- (渡辺健,渡部憲:再生骨材を使用した高流動繊維補 強コンクリートの力学特性、コンクリート工学年次 論文集,Vol.39, No.1, pp.271-276, 2017.7
- 丸山裕生,渡部憲,飯島友貴,大瀧諄:再生骨材を 使用した高流動高靭性コンクリートの強度発現およ び収縮特性,東海大学紀要工学部,Vol.57, No.2, pp.9-16, 2018.3
- 6) 日本建築学会:建築工事標準仕様書・同解説 JASS
 5 鉄筋コンクリート工事, pp.12,194,372, 2018
- 7) 田中亮一,網野貴彦,國枝稔:超高強度ひずみ硬化型セメント系材料の収縮低減に関する検討,コンクリート工学年次論文集, Vol.39, No.1, pp.259-264,2017
- 8) 河野克哉,二羽淳一郎,大滝晶生,村田裕志:高強 度軽量骨材コンクリートはりのせん断特性に及ぼす 合成短繊維と収縮低減材料の併用効果,土木学会論 文集E, Vol.63, No.4, pp.575-589, 2007.10
- 9) 日本建築学会:膨張材・収縮低減剤を使用したコン クリートに関する技術の現状, pp.111-129, 196-235, 2013.7
- 10) 渡部憲,大岡督尚,白都滋,加藤雄介:再生細骨材 を使用した高靱性セメント複合材料の圧縮破壊挙 動,コンクリート工学年次論文集,Vol.28, No.1, pp.485-490, 2006.7
- 渡部憲,大岡督尚,白井伸明,森泉和人:各種コン クリートの圧縮軟化挙動,コンクリート工学年次論 文集, Vol.22, No.2, pp.493-498, 2000.6
- JCI規準:繊維補強セメント複合材料の曲げモーメントー曲率曲線試験方法(JCI-S-003-2007), コンクリート工学協会, 8pp., 2007
- 13) 土木学会:コンクリート標準示方書[規準編]平成11 年度版,JSCE-G552 繊維補強コンクリートの曲げ 強度および曲げタフネス試験方法,pp.217-219, 1999.11
- 14) 国分正胤,小林正几,長滝重義,岡村甫,町田篤 彦:膨張性セメント混和材を用いたコンクリートの 標準試験方法に関する研究,土木学会論文報告集, 第225号, pp.93-99, 1974.5
- 15)日本建築学会:鉄筋コンクリート造建築物の収縮ひび割れ制御設計・施工指針(案)・同解説, pp.4-7, 53
 -60, 2006.2