論文 室内外壁面を想定した2方向同時暴露環境下にある中性化後のコン クリート中の鉄筋腐食

本田 悟*1・塚越 雅幸*2・花岡 恭平*3・上田 隆雄*4

要旨:中性化したコンクリート外壁の暴露環境を再現するため、室内外を想定した2面それぞれに異なった 温湿度環境を作用させ、鉄筋の腐食性状について検討を行った。暴露環境は、夏季の日射の影響を考慮し屋 外側暴露面を 45℃に加熱し、冬季を想定した条件では 3℃に冷却した。さらに降雨を模擬した吸水の有無の 違いも設けた。冬季では、結露水の影響により含水率が室内外ともに上昇した。また降雨の影響を受ける外 壁面では急激に含水率が上昇し、温度条件の違いによらず降雨2週間程度で室外側からかぶり 82.5 mm 位置 にある室内側の鉄筋位置まで水分が到達し、それと比例するように徐々に腐食電流密度の上昇が見られた。 キーワード:外壁,室内外,中性化,鉄筋腐食,温度,含水率

1. はじめに

建築物の室内と室外では全く異なった温湿度環境に あり、コンクリートの中性化の進行速度とその後の鉄筋 腐食状況が異なることが知られている 1)。一般に、屋外 面は降雨の影響を受け、コンクリートは湿潤状態になり やすいため中性化速度は緩慢になるが、中性化が鉄筋位 置まで達した後の鉄筋腐食速度は速いとされている。一 方で室内側は空調により比較的温湿度が安定している ために、コンクリートは乾燥状態となり中性化速度は早 くなるが、中性化後の腐食速度は遅くなるとされている。

外壁部材の室内外には、それぞれ異なった温湿度環境 が同時に作用していることは明らかであるが,現行のRC 部材の耐久性評価試験の1つである促進中性化試験や屋 外暴露試験では,供試体全体を一定の温湿度環境下に暴 露して行われる事が多い。そこで著者等はこれまで, RC 外壁面の様に室内外で異なる温度と湿度が同時に2方向 から作用するような環境を実験的に再現し、中性化速度 に及ぼす影響 2)について、外断熱材や防水材の影響を含 めて検討を行った結果,室外面から室内面側に生じる, 温度と含水率分布の違いが、室内外からの中性化速度に 及ぼす影響について明らかとした。

本研究では、室内外で異なる温湿度が同時に2方向か ら作用するような環境を実験的に再現し,鉄筋位置まで 中性化が到達した後のコンクリート中の鉄筋腐食速度 に及ぼす影響について検討を行った。

2. 実験概要

試験は夏季と冬季を想定し、夏季では日射の影響を受 けて高温となり冬季では低温となるように外壁面側に

*1 福岡大学 工学部 建築学科 講師 (正会員) *2 福岡大学 工学部 建築学科 准教授 博士(工学) (正会員) *3 吉原建設 *4 徳島大学大学院 理工学部研究部 理工学部門 社会基盤デザイン系 教授 博士(工学) (正会員)

作用させ、かつ室内側は一定の温度・湿度に保たれてい るような場合を再現した。さらに,屋外側面では一定間 隔で暴露面を水面に浸漬させ降雨の影響を再現した。こ のような環境下で、中性化が鉄筋位置まで達したコンク リートの中性化後の鉄筋腐食速度を, 電気化学的鉄筋腐 食指標を用いて定期的に測定した。

2.1 供試体の作製

(1) 供試体の調合と形状

本試験では,鉄筋腐食試験に先立って鉄筋位置まで中 性化を進行させる必要があるが、コンクリート表面から 内部へと拡散する炭酸ガスは、粗骨材の表面に達すると 移動が妨げられる事や、骨材とセメントペーストの界面 の脆弱部を優先的に進行するなど³⁾中性化深さが見かけ 上不均一となることが指摘されている。そこで、中性化

W/C	S/C	送位是 (Iradana3)			28日
(%)	(%)	+	圧縮強度		
		水	セメント	細骨材	(N/mm²)
60	300	288	480	1440	35.4

表-1 モルタルの調合表

領域を一定にコントロールするため、また中性化や鉄筋 腐食などの劣化を促進するため W/C=60%のモルタルを 用いることとした。調合を表-1に、また形状と寸法に ついては図-1に示すように、暴露面2面からかぶり17.5 mm にそれぞれ D10 の鉄筋を配した 100×100×250 mm の角柱とした。なお、かぶり厚さは本試験のモルタルの 材料や調合,鉄筋などの条件で表面ひび割れなど不具合 が発生しない、最小厚さとなるよう予備試験で事前に確 認し決定した。供試体は打設翌日に型枠から取り外し, 2週間封緘養生した後,20±3℃,50±10%R.H.の実験屋 環境(以後,実験室温湿度環境)で2週間乾燥させた。 (2) 中性化処理

供試体の暴露面2面以外をエポキシ樹脂でシールした 後に、炭酸ガス濃度 5.0%、23℃±1、50%±5 R.H.に調整 された促進中性化槽内に暴露した。この間、定期的にモ ルタルを割裂し、1%フェノールフタレイン溶液を割裂面 に噴霧することで、中性化深さの平均が15mm以上まで 進行させており(写真-1),その後の鉄筋腐食指標の観 察結果より炭酸化フロントは鉄筋まで達していると判 断した。なお、促進中性化暴露試験は56日間行った。中 性化処理後,電気抵抗式水分計のセンサーの挿入孔(1測) 定箇所につき 6 mm ϕ を 30 mm 間隔で 2 点, 深さ 40 mm) を両暴露面より30mmの位置と中央に設けた。また、別 途同形状・同条件で作製した温度測定用モルタル供試体 に対しT熱電対水分計と同位置に設けた。

2.2 暴露試験条件

写真-2に示すように恒温恒湿環境に設置した。なお, 本研究で用いた供試体は100×100×250 mmの小型の角 柱の供試体である。これらを,積み上げて配置して壁面 を作製した。なお、供試体間での熱の移動を避けるため に供試体の間には厚さ 20 mm の断熱材を設け絶縁した。

夏季を想定した実験環境では,屋外で日射の影響を受 ける壁面を再現するため, 屋外面側を想定した面には白 熱灯(400W)で供試体の表面温度が最大で 45℃程度と なるよう供試体暴露面より水平距離で 70 cm の位置から 照射した。照射時間は夏季の日照時間を想定して6時間 とし、その後18時間実験室温湿度環境に暴露を1サイ クルとした。

冬季を想定した実験環境では、低温履歴を再現するた め、屋外を模擬した面の供試体の表面温度が3~5℃程度

図-2 供試体の表面と内部温度変化

	今中	室外		
	至内	温度のみ	温度 or 降雨	
冬季想定		0℃(表面温度3~5℃), 30%RH	20~23℃,水浸:6h +0℃(表面温度1~5℃),30%RH:18h	
標準温度		20∼23°C, 50±10%RH	20~23℃,水浸:6h +20~23℃,50±10%RH:18h	
夏季想定	20∼23°C, 50±10%RH	表面温度40℃(ランプ照射):6h +20~23℃,50±10%RH:18h	20~23℃ 水浸:6h +20~23℃,50±10%RH:18h * 表面温度45℃(ランプ照射):6h +20~23℃,50±10%RH:18h	

表-2 角柱鉄筋コンクリート試験体の暴露試験の条件

ŝ

還度

となるように冷凍機を用いて調整した。なお,屋内を想 定した面については夏季・冬季ともに実験室温湿度環境 に暴露した。

さらに降雨の影響については、暴露面の室外面を想定 した方の面を6時間水に浸漬させることで再現した。水 への浸漬は、夏季・冬季環境ともに実験室温湿度環境で 行った。なお、夏季環境については日射の影響と降雨の 影響を1週間のサイクルの間で5日間作用させ2日間は 両面ともに実験室温湿度環境に暴露とすることを基本 とし、7週間の暴露試験を行った。

夏季と冬季における供試体の暴露2面の温度変化について測定した結果の例を図-2示す。また、試験の全パラメーターをまとめて表-2に示す。

2.2 鉄筋の腐食性状の測定方法

暴露期間中,電気化学的鉄筋腐食指標の測定⁴⁾を定期 的に実施した。測定は,測定の3時間前に供試体を実験 室温湿度環境に移動し,供試体温度が23℃程度となって から行った。測定項目は,モルタル中の鉄筋の自然電位, かぶり部分のモルタルの電気抵抗,腐食電流密度(アノー ド分極曲線より算出)とした。測定を行う際の照合電極は 飽和銀塩化銀電極 (Ag/AgCl),対極にはチタン板を用い て供試体中の鉄筋全長の平均値として測定を行った。電 気抵抗は高周波数側 (800 Hz)のインピーダンス値とし て求めた。モルタル中の鉄筋のアノード分極曲線は掃引 速度 60 mV/sec で電位を自然電位から 300 mV 変化さ せ,その間の電位と電流の関係を測定した。

測定は図-3 に示すように,室内外を想定した暴露面 2 面のそれぞれ鉄筋上部のモルタル表面中央とし,水道 水で湿らせたウェスを介して照合電極と対極を供試体 表面に接触させながら測定した。

3. 試験結果と考察

3.1 温度の影響

供試体中の鉄筋付近の温度は最低5℃から最大で40℃ 近くまで上昇する。そこでまず、鉄筋の腐食状況に及ぼ す温度の影響について、別途同形状の供試体の測定面側

を3日間水中浸漬させることで、鉄筋位置のモルタルの 含水率を、本試験での最大含水率以上となる70%、また 実験室に静置することで11%に調整したものを用いて検 討を行った。試験では供試体表面より赤外線ランプ照射 と冷気を作用させることで、鉄筋位置の温度が夏季を想 定し40℃から、冬季を想定し5℃まで、また比較のため 10℃と23℃の場合の鉄筋の腐食電環境をモニタリング した。なお、装置自体の温度の影響を除去するために測 定は実験室温湿度環境下で行った。そのため、測定前後 での供試体の温度差が±3℃以内となるように、測定時 には供試体周辺を断熱材で覆い測定期間中の供試体の 平均温度が各設定温度となるように調整した。また温度 変化を供試体に与えたが測定前後での含水率の変化は ±1.5%程度であった。

アノード分極時の分極量と電流密度の関係を図-4 に, 鉄筋の自然電位と電気抵抗と,アノード分極曲線から求 めた腐食電流密度をまとめて図-5 に示す。

図-4 より高・低含水率の両供試体ともに、温度が高

図-6 供試体の含水状態の測定・予測結果

い方が分極しやすくなる傾向にあった。また腐食の進行 程度も分極しやすさに影響を及ぼす⁵⁾とされているが, 本試験は中性化試験直後に吸水と乾燥による含水率調 整を行っているため,鉄筋腐食はほぼ進行していない状 態の結果である。

図-5より、乾燥状態の供試体については、モルタル の電気抵抗については 40℃の場合大きく低下したもの の、自然電位は、温度との相関性はあまりみられずほぼ 一定であった⁶⁰が、モルタルの電気抵抗は温度が高いほ ど低くなった。また、温度が高いほど腐食電流密度は大 きくなる傾向にあり、23℃を基準とした場合、5℃では 60%程度低下し、40℃では 10%程度上昇した。また、腐 食電流密度は全ての温度条件で、供試体が乾燥状態の物 と比べ、高含水状態でおよそ 10 倍程度となっており、本 試験条件では、温度に比べ含水率の影響が鉄筋腐食に対 してより支配的であると言える。

3.2 暴露試験期間中のモルタルの含水率変化

試験体の全体重量を測定し,降雨と乾燥の影響による 試験体全体の水分量の変化を求めた結果と,含水率セン サーで測定したモルタル内部の含水率の測定結果をそ れぞれ図-6(a),(b)に,予測計算結果⁷⁾と共に示す。

水分量の予測計算については、モルタル中の水は Fick の拡散則に従って移動するものとし、拡散係数は含水率

		境界の含水率(%)			
		標準温度	冬季温度	夏季温度	
降雨 あり	室内側	15	20(結露)	15	
	屋外側	100(降雨) 15	100(降雨) 15	100(降雨) 15 5 (照射)	
降雨 なし	室内側	15	20(結露)	15	
	屋外側	15	20(結露)	5 (照射) 15	

表-3 水分状態の予測計算に用いた境界条件

に依存することが知られていることから,式(1)により計算した。D100%の値は0.02 cm²/secを用いており,境界条件については表-3 に示す通りである。また,水に浸漬した場合とランプ照射時には境界の見かけの拡散係数を3倍とすることで水分浸透と加熱による蒸発を再現することで,概ね実験結果をトレースするような含水率分布と重量変化となった。

$$D/D_{100\%} = 1/\left\{22\left(1 - \frac{R}{100}\right) + 1\right\}^{1.1}$$
(1)

ここで, D_{100%}: 相対含水率 100%の時の水分拡散係数 (cm²/sec), R: 相対含水率 (%)

予測計算結果が示す通り,実際は水に浸漬と乾燥を繰り返し,試験体の含水率は1日の間に大きく変動してい

る。なお,各種電気化学的鉄筋腐食指標は水に浸漬させ る直前の状態で測定したものである。

片面を水に浸漬しない標準温度および夏季温度下に 暴露した供試体では、ほとんど含水率変化が見られなか ったため、養生と中性化処理の段階で暴露開始前に気乾 状態となっていたものと思われる。一方で、冬季環境の 供試体には試験期間中、結露水による濡れ観察され、そ の結露水を吸水しているためと思われるが供試体内部 の含水率は室内側で 20%、屋外側で 25%まで上昇した。

一方で、屋外面を水に浸漬させた供試体は、急激に水 分を吸水しており、温度環境条件を問わず7日程度で室 外側にある鉄筋位置の含水率は、標準と冬季温度では 40%程度、夏季温度で30%程度まで上昇している。室内 側にある鉄筋位置の含水率も上昇しており、暴露21~ 35日で全ての供試体で30%以上まで上昇している。

3.3 電気化学的鉄筋腐食指標の測定結果

鉄筋の腐食環境条件の測定結果として、自然電位とか ぶりモルタルの電気抵抗、腐食電流密度のモニタリング 結果をまとめて図-7(a)、(b)、(c)にそれぞれ示す。 自然電位の初期値は全ての供試体において,100 mV 前後と ASTM C876-91 の判定基準における非腐食領域(E> -90 mV vs Ag/AgCl)より貴な値にある。中性化は鉄筋 位置まで達しているが、含水率の測定結果より、モルタ ル内の鉄筋近傍の含水率は15%以下と気乾状態に近い値 となっており、鉄筋腐食に必要な水分が不足している環 境にあるためだと思われる。

暴露試験後,水に浸漬していない標準温度の供試体の 自然電位は初期値よりほぼ横這いであり,夏季温度では 乾燥の影響を受け若干貴な値に変化し,冬季環境の供試 体については両暴露面で結露による水分の供給の影響 を受けて卑な値へと変化したものと思われる。

電気抵抗についても含水率と相関関係にあり,特に夏 季温度で浸水していない供試体では乾燥傾向にあるた め抵抗の値は急激に上昇し,冬季温度の供試体では浸水 の有無にかかわらずいずれも横這いであった。

腐食電流密度についても,乾燥傾向にある標準と夏季 温度の供試体でほぼ横這いにあるが冬季環境では室内 外両面ともに緩やかな上昇傾向にあった。

図-7 鉄筋の腐食環境モニタリング結果

続いて、水に片面を浸漬した供試体については、室外 側の鉄筋付近の含水率は暴露7日間で全ての供試体で 30%以上に急激に上昇しているため、自然電位も-200mV 程度とASTMの判定基準における腐食確定領域(E<-240mV vs Ag/AgCl)に近い卑な値を示した。また室内側 の鉄筋付近でも、含水率の上昇にともなって自然電位は 卑な値へと変化しており、標準温度では7日目で-100mV まで低下し横這いとなり、冬季温度と夏季温度では35日 まで緩いやかに卑な値に変化し-100mV 程度となった。

電気抵抗については夏季の室内側で若干,上昇したが その他は初期値のまま横這いとなった。

腐食電流密度については、含水率の高いものほど高い 値を示す傾向にあるが、夏季温度の供試体では、ランプ 照射と水への浸漬を繰り返しているため、含水率の上昇 が他の水準と比べ緩やかであり、腐食電流密度の上昇割 合も同様に緩やかとなっている。

含水率と腐食電流密度の関係を図-8 に示す。室内外 関係なく、含水率と腐食電流密度は高い相関関係にあっ た。本試験では、水分供給と乾燥を繰り返して行ってい るために、鉄筋近傍には腐食に必要な水分と酸素が存在 しているものと思われる。

最後に,温度と含水率の影響を考慮した,室内外面の 鉄筋の腐食電流密度を図-9に示す。計算では,図-5よ り温度による腐食速度の倍率と,図-7(c)より21~49 日までの腐食電流密度を用いた。降雨の影響がない場合 では、冬季に生じる結露による含水率の上昇が室内外と もに腐食電流密度の上昇に大きく影響している。降雨が 想定される場合は、夏季の日射による温度上昇により腐 食は加速され、冬季は乾燥が含水率は上昇するものの、 低温のため腐食速度は低く抑えられると予想された。

4. まとめ

(1) 23℃の場合と比べ,40℃と高温環境に曝された場合, モルタルの含水率が高い供試体では腐食電流密度は10% 程度増加し,5℃と低温環境に曝された場合は60%程度 低下した。

(2) 降雨がない場合でも、冬季には暴露表面が低温になり、結露が生じ含水率の上昇が室内・外の両面で見られた。その結果、自然電位は卑化し、腐食電流密度も上昇した。

(3) 降雨の影響を受ける場合は,降雨が直接作用する屋 外面側からかぶり 17.5 mm 位置の含水率は7日で40%程 度まで急激に上昇する。室外面側からかぶり深さ 82.5 mm (室内側からかぶり 17.5 mm)の鉄筋位置の含水率も 14 日程度で30%以上に達した。降雨が連日続く場合,室 内面側までの雨水が浸入し,室内側の鉄筋の腐食も進行 する恐れがある。

参考文献

- 今本啓一,兼松学,濱崎仁,清原千鶴,木野瀬透,寺西浩 司,野口貴文:既存構造物の調査事例に基づく中性化後の 鉄筋腐食性状,2017年度日本建築学会会(中国)材料施工部 門パネルディスカッション(1)資料,pp1-4,2017.9
- 2) 船坂健介,塚越雅幸,上田隆雄,中山一秀:外断熱が施工されたコンクリート内・外壁面の中性化速度に及ぼす屋外の 温度環境の影響,コンクリート工学年次論文集,vol.41,No.1, pp569-574,2019.7
- 3) 左右田考男,山崎寛司:コンクリートの中性化と鉄筋のさ びについて (20 年試験結果の報告),材料試験, Vol.7, No.63, pp.680-690, 1958.7
- 高木猛志、中川元宏、服部篤史、宮川豊章:中性化による 鉄筋腐食への電気化学的非破壊検査の適用性、コンクリー ト工学年次論文集、vol.25, No.1, pp1655-1660, 2003.7
- 5) 佐藤唯, 鹿島篤志, 皆川浩, 久田真: 温度が鉄筋のカソード 分極特性に及ぼす影響の評価, コンクリート工学年次論文 集, vol.32, No.2, pp1067-1072, 2010.7
- 6) 鈴木僚、西村次男、加藤佳孝、岩波光保: 測定環境条件が 鉄筋コンクリートの電気化学的測定結果に及ぼす影響、コ ンクリート工学年次論文集, vol.29, No.2, pp751-756, 2007,7
- 7) 秋田 宏,藤原 忠司,小西 俊之,尾坂 芳夫:コンクリート 中の水分移動における水分伝導率の評価、コンクリート工 学会年次論文集,Vol.12, No.1, pp.161-166, 1990.7