論文 接着系注入方式あと施工アンカーの火災時及び火災後の付着破壊 強度に関する試験方法の提案

大和 征良*1・池田 憲一*2

要旨:長期部材接合を想定し,市場で広範に使用されているエポキシ樹脂系カートリッジ型の接着系注入 方式あと施工アンカーについて,火災時(高温時)及び火災後(高温履歴後)の付着破壊強度の載荷加熱実験 を実施し,その付着破壊強度の実験的研究を行った。エポキシ樹脂や製品接着剤の物性値と接着系注入方 式あと施工アンカーの付着破壊強度の数値には差異があることから,本実験的研究で行った試験方法に基 付き,火災時及び火災後の付着破壊強度試験を行うことにより,常温時の付着強度式の付着応力度と本実 験の付着破壊強度を置換して評価することで,本試験方法の適用の可能性を示した。

キーワード:接着系注入方式あと施工アンカー,火災時,火災後,付着破壊強度,残存付着強度,試験方法

1. はじめに

既存鉄筋コンクリート系建造物の耐震補強方法の一 つとしてあと施工アンカーが使用されている。最近では, 騒音振動の少ない接着系注入方式あと施工アンカーが 頻繁に使用されるようになってきた ^{1),2)}。一方で、あと 施工アンカーの部材接合における長期許容応力度(引 張・せん断)については明らかになっていない部分が多く, 中でも長期クリープ特性や環境温度の影響並びに耐火 性能についてはその解明は十分ではなく、使用にあたっ てはさらなる検証が必要であるとされている 3).4)。また, 建物の火害診断および補修・補強方法指針・同解説 5)(日 本建築学会編)では、補修・補強工法および補修材料の選 定と実施において、部材の増設を行う際にあと施工アン カーを用いる場合は火災に対する配慮も必要である、と 記載されている。しかしながら、接着系注入方式あと施 エアンカーを使用する引張の長期部材接合(長期許容引 張応力度)を想定した火災時(高温時)及び火災後(高温履 歴後)の実験的研究は、筆者らが行った注入方式接着系あ と施工アンカーの実験検証以外ほとんど存在しない 6,7)。

本研究は,長期部材接合を想定し,市場で広範に使用 されているエポキシ樹脂系カートリッジ型の接着系注 入方式あと施工アンカーに限定して,火災時(高温時)及 び火災後(高温履歴後)の付着強度の載荷加熱実験を実施 し,その付着破壊強度の試験方法を提案するものである。

2. 本実験で使用する接着系あと施工アンカー

本実験で使用する接着系注入方式カートリッジ型の あと施工アンカーの接着剤について,**表-1**に示す。本 論文においては,市場で広範に使用されているある特定 の接着系アンカーのエポキシ樹脂系(A)の接着剤に限定 して言及するものとする。

けったトラナ展会	製品(接着剤)		
物性訊號 (試驗士注·US)	エポキシ樹脂系(A)		
(武阙//云,315)	樹脂(M)	硬化剤(H)	
	ビスフェノ	メタキシレンジ	
十合右脚	ール A	アミン	
土沽有物	ビスフェノ	石英	
	ール B		
混合比 (M:H)	3:1		
圧縮強度 (MPa)	100.0	102.0	
(JIS K 7181)	109.0	108.0	
引張強度(MPa)	75 7	45.1	
(JIS K 7161)	/3./		
曲げ強度 (MPa)	118.0	66.7	
(JIS K 7171)	118.0		
引張せん断接着強度	10.2	7.5	
(MPa) (JIS K 6850)	10.5		
付着破壊強度(MPa)		25	
(文献 8))		25	

表-1 本実験で使用する製品(接着剤)の物性

注)引張せん断接着強度とあと施工アンカーとしての付着破壊強度の 数値が大きくかけ離れているため,樹脂のガラス転移温度などの温度特 性に関する物性データ試験を行っていない。

3. 実験概要と結果

3.1 実験概要

図-1 に試験体の仕様を示す。写真-1 に試験装置と 試験体設置状況を示す。表-2 に異形鉄筋の強度試験結 果を示す。実験は東京理科大学葛飾キャンパスの第二実 験棟の1000kN 油圧式万能試験機を用いて行った。試験 体は,直径150mm・高さ300mm・厚さ5mmの鋼管柱に,

^{*1} 日本ヒルティ 技術本部 博士(工学)(正会員) *2 東京理科大学 教授 博士(工学)(非会員)

普通コンクリート(設計基準強度 Fc=15(N/mm²))を打設 し、コンクリート養生硬化後、試験体の上面のコンクリ ート中心部に径 20mm・有効埋込み長さ(le)160mm(10da) の孔をハンマードリルで穿孔後、この穿孔穴を清掃した。 その後,エポキシ樹脂系注入方式接着系あと施工アンカ ー剤(接着剤)を注入し、先端を寸切りした D16 の異形鉄 筋を挿入した。異形鉄筋は最終破壊モードとして付着破 壊を先行させるため、高強度材(SD685)を使用した。温度 測定用の熱電対は,異形鉄筋を挿入する際に,アンカー 筋とコンクリート穿孔穴側面の間の接着剤中に、穿孔穴 底部と上部(コンクリート表面より 30mm 程度の深さ)の 2 か所に設置した(図-1)。試験体は、試験機に設置後、 試験体上部に引張力の反力板をコンクリート破壊とな らないように設置し、試験部を取り囲むように高温電気 炉を設置した(図-2,写真-1,写真-2,写真-3)。実 験時の試験体コンクリートの材料試験強度は 28.4N/mm² であった。加力時の変位は、アンカー筋のコンクリート 表面からの抜け出し量で測定したが、アンカー筋の伸び 量も含まれている。アンカーの破壊モードは、鋼材破断 (アンカー筋の破断),コンクリートコーン状破壊,付着 破壊の3種類がある %が、その3種類の破壊モードの中 で,鋼材破断とコンクリートコーン状破壊においては鋼 材とコンクリートの高温時の性状として既往の研究が 既に存在するため10)、アンカー筋に高強度異形鉄筋を使 用し,試験体上面のコンクリート表面に平板治具を設置 してコンクリート表面を拘束することで、付着破壊モー ドが支配的になるようにして実験を行った。

写真-1 試験装置と試験体設置状況

表-2 D16 異形鉄筋材料試験結果

写真-2 油圧式万能試験機

写真-3 油圧式万能試験機

3.2 実験パラメータ 図-3に実験パラメータを示す。試験体ごとのパラメー タ条件の詳細を表-3に示す。

試験体温度上昇速度は 0.8℃/分を目標として加熱した。

載荷・加熱条件は以下の2つのパターンを採用した。パ ターンIは、火災時(高温時)の強度を確認することを目的 として,実施した。引張荷重を載荷した状態で加熱して 付着破壊時の温度を測定した。ここで、付着破壊は軸変 形が 30mm となったときとした。これは、荷重が載荷さ れた状況下での高温時の暴露であり,実際の火災時(高温 時)の状況を再現したものである。パターンIIは、火災後 (高温履歴後)の再使用性を確認することを目的として実 施した。あと施工アンカーの常温領域の耐力は、文献 9) の耐震改修設計指針等の耐力式で評価されており、高温 時は文献 11)では約 200℃を超えたところで付着破壊強 度がほとんど残っていない結果が報告されている。また, 文献 6)では、エポキシ樹脂系注入方式接着系あと施工ア ンカーのみであるが、火災後の残存耐力の実験において、 250℃までは短期荷重として常温時の終局付着耐力を有 することが報告されている。従って、本実験では、 火災 後(高温履歴後)の残存付着耐力を明らかにするため, 150℃から 400℃まで 50℃ごとに温度パラメータを設定 した。また、文献 6)より、250℃と 300℃における残存付 着耐力に大きな差異が存在するため、275℃についても 実験を行うことにした。さらに、パターンⅡの実験にお いて、温度パラメータ 350℃の実験を行っている間、 350℃の目標温度を超えたところで長期引張荷重によっ て付着破壊が生じてしまったため、350℃と400℃におい ては、長期引張荷重を載荷せずに実験を行った。

3.3 長期引張荷重の設定と設計付着応力度

長期引張荷重は鉄筋コンクリート構造計算規準・同解 説¹²⁾の鉄筋のコンクリートに対する常温時の長期許容 付着応力度(実際の長期部材接合を考慮して上端筋の算 定式とした)より算出し(式(1)),これに,構造材料の耐火 性ガイドブック¹⁰⁾の経歴温度時の鉄筋とコンクリート の付着強度残存率(図-4)を乗じた値を長期設計引張荷 重として載荷した(式(2),式(3))。詳細を表-3に示す。長 期付着応力度から長期設計引張荷重の換算は,耐震改修 設計指針⁹⁾及び日本建築学会の各種合成構造設計指針¹³⁾ に示される式を用いて以下のように算出した(式(3)~式 (7))。また,あと施工アンカーの常温時の許容付着応力 度の算定式(式(8))も以下に示す。

$$_{\text{cia,l}} = (1/15) \cdot F_{\text{c}} \tag{1}$$

$$\tau_{\rm cia,l,r} = \tau_{\rm cia,l} \cdot \delta_{\rm r} \tag{2}$$

$$T_{a3,l} = \tau_{cia,l,r} \cdot \pi \cdot d_a \cdot l_e \qquad (3)$$

$$T_{a3,u} = \tau_a \cdot \pi \cdot d_a \cdot l_e \qquad (4)$$

$$\tau_{a} = T_{a3,u} / (\pi \cdot d_{a} \cdot l_{e})$$
(5)

$$\tau_{al} = T_{a3,u} / (3 \cdot \pi \cdot d_a \cdot l_e)$$
(6)

$$\tau_{as} = T_{a3,u} \cdot 2 / (3 \cdot \pi \cdot d_a \cdot l_e)$$
(7)

$$\tau_{au} = 10 \cdot \sqrt{(\sigma_B/21)} \tag{8}$$

ここで,

τ

τ cia,l: 長期許容付着応力度(N/mm²)
 τ cia,lr: 長期設計付着応力度(N/mm²)
 δr : 付着強度残存率
 Fe: コンクリート設計基準強度(N/mm²)
 Ta3,1: 長期設計引張荷重(N)
 Ta3,u: 終局設計引張荷重(N)
 τ a, τ au: 付着応力度(N/mm²)
 τ al: 常温時長期許容付着応力度(N/mm²)
 τ as: 常温時短期許容付着応力度(N/mm²)
 da: アンカー筋径(mm)
 le: アンカー筋の有効埋込み長さ(mm)

σB: コンクリート強度(N/mm²)

実験結果と考察

4.1 実験結果

表-4 に実験結果を示す。図-5 に火災時(高温時)を 想定したパターンIの温度と付着強破壊度との関係を示 す。付着破壊強度は温度の上昇とともに低下しているこ とがわかる。図-6 にパターンIIで得られた高温履歴温度 と火災後(高温履歴後)の残存付着破壊強度との関係を 示す。火災時(高温時)のアンカー部の履歴温度が 250℃ までは最大耐力は鉄筋の破断で決定され,その時の値は 常温時のアンカーの付着破壊強度以下となる。また, 250℃を超えたところから,急激に耐力低下が生じ,

	衣-3)	キリヘト			
						高
						温
	載		火災時	(高温時))	履
	荷					歷
	加					後
試験体名	熱		電気			
	パ		炉			
	Я	目標	暴露	Т	T cia,l(1.0)	PF
	-	温度	時間	(T _{dl})	$\times \delta_r$	
	ン	(°C)	(t)	(kN)	(N/mm ²)	
			(分)			
①DF_50		50	50	112.5	-	-
②DF_60	Ι	60	63	96.5	-	-
3DF_70		70	75	80.4	-	-
@DF_80		80	88	48.2	-	-
⑤DF_100		100	113	32.2	-	-
@DF_120		120	138	24.1	-	-
⑦DF_200		200	237	16.1	-	-
®AF_150		150	-	(4.9)	0.6	S
@AF_200	П	200	-	(3.7)	0.45	S
@AF_250		250	-	(2.5)	0.3	S
(II)AF_275		275	-	(2.1)	0.26	В
@AF_300		300	-	(1.9)	0.225	В
(3)AF_350		350	-	-	0	В
(4)AF_400		400	-	-	0	В

っ 手陸仕 ロフレ

注) T: 引張載荷荷重, (T_d):(長期設計引張荷重), PF:予測破壊モード τ_{cial}(1.0)=(1/15)・F_c=(1/15)・15=1.0(長期許容付着応力度) δ_r:付着残存率, 破壊モード,S: 鋼材破断,B: 付着破壊

300℃以上においては,残存付着破壊強度は,1.3~ 1.4(N/mm²)程度まで低下することがわかった。これは, 250℃前後より硬化後のエポキシ樹脂の分解(炭化)が促 進されること¹⁴⁾に起因しているものと思われる。

4.2 考察

(1)常温時の物性試験とアンカーの付着破壊強度

接着剤の接着強さを試験する方法として,引張せん断 接着強度(JIS K 6850)がある(表-5)。

本実験で用いたエポキシ樹脂系カートリッジ型の接 着系注入方式あと施工アンカーのうち,ピュア樹脂(骨材 やフィラーが含有していない接着剤)と製品接着剤(骨材 やフィラーが含有している,実験試験体(図-1)に注入さ れた接着剤)の引張せん断接着強度(JIS K 6850)の結果を 表-6,図-7に示す。さらに,接着系あと施工アンカー の引張拘束試験(欧州 ETAG001(技術ガイドライン)¹⁵⁾準 拠)の付着破壊強度の結果を表-6,図-7に同時に示す。 この欧州技術ガイドラインに準拠の付着破壊強度試験 は,製品接着剤における接着系注入方式あと施工アン

表-4 実験結果

					-		
	火災		災時	火災後			
	. 0	(高油	温時)	(高温履歴後)			
試験	л 9		山正	a su de	星十		
P+*田	_	· 温度 (°C)	力成	() (D ₁)	可正		EE
5	ン		何里	(MPa)	力坂	τ au,r,e	FF
			(KN)		何里	(N/mm ²)	
					(kN)		
1		55	112.5	14	-	-	
2		59	80.4	10	1		I
3	I	65.6	96.5	12	-	-	-
4		89.7	48.2	6	_	_	_
5		100 123.5	32.2	4	_	_	-
6			24.1	3	-	_	_
\bigcirc		301	16.1	2	-	_	-
8		150	4.9	-	190.1	≧23.6	S
9		200	3.7	-	180.0	≧22.3	S
10		250	2.5	-	181.9	≧22.6	S
	II 275 300	275	2.1	-	117.5	14.6	В
12		1.9	-	9.6	1.1	В	
13		350	-	-	17.0	2.1	В
14		400	-	-	9.0	1.1	В

注) τ_{au,d}: 火災時付着破壊強度, τ_{au,e}: 火災後残存付着破壊強度, FF(最終破壊モード), S: 鋼材破断, B: 付着破壊, ⑦試験体温度 301℃: 目標温度 200℃より高温なのは想定以上に荷重を保持したことによる。 付着破壊強度(N/mm²)

表-5 接着剤物性値試験

試験種類	JIS 番号	試験体形状
圧縮強度	K7181	φ5mm × 6.25mm
引張強度	K7161	175mm × 20mm × 3mm (ISO-527 Type 1B)
引張せん断接着強度	K6850	12.5mm × 25mm (接着面)

カーの付着性能試験(案)15),16)に準じており、アンカー筋 M12, 穿孔径 φ14mm, 定着長 72mm, 母材温度は 23 度 前後の常温(室温)にて行ったものである。かつ、引張せ ん断接着強度の他に, 有機系樹脂接着剤の物性の指標と なる, 圧縮強度と引張強度についても物性試験を行い, 接着系アンカーの付着強度試験の付着破壊強度との比 較を行った。これは、電気炉の設置など少々複雑となる 接着系注入方式あと施工アンカーの高温時の付着破壊 強度の試験方法や評価方法を考案するにあたり、アンカ ーの付着破壊強度とピュア樹脂や製品接着剤の接着強 度との間に相関性があれば、ピュア樹脂もしくは製品接 着剤の接着強度から高温時のアンカーの付着破壊強度 を評価できる可能性を有するものと思われたからであ る。しかしながら,表-6,図-7より,エポキシ樹脂系 カートリッジ型の接着系注入方式あと施工アンカーの うち、ピュア樹脂と製品接着剤いずれも、付着破壊強度 との数値に乖離があり、また、ピュア樹脂と製品接着剤 それぞれも物性値として必ずしも同様の数値を示すも のではないことが認識できる。これは、接着剤の物性試 験は、試験方法に基付いた測定値の代表的な数値を示し たもので、その製品の特定や品質管理に用いるものであ り、材料間の比較をするためのデータを意図して行われ るものである。さらに、これは接着系アンカーの付着強 度発現のメカニズムとも異なる。接着系アンカーの付着 強度発現のメカニズムは, 接着剤とコンクリート壁面の 界面の接着力と摩擦力,並びに支圧力が複合的に発生し ている抵抗機構,又は,接着剤と異形鉄筋との界面にお いても同様の抵抗機構がそれぞれ複合的に発生してお り、それらの抵抗機構が不均等に組み合わされている。 さらには、接着剤の物性試験は、試験片の厚みが 2mm~ 4mmの決まった形状のものであり,材料の流れ方向の強 さを測っているが、実際に接着系あと施工アンカーとし 使用される接着剤は、肉厚が 1mm~4mm とアンカー筋 の呼び径によって差異があり、かつ、形状は円柱鋼管の ような形であることからも、単純なピュア樹脂と製品接 着剤の物性試験による物性値と接着系アンカーの付着 破壊強度とは必ずしも相関性を有しないことが改めて 認識できた。

表-6 接着剤物性値試験

物性試験 種類	注入方式接着系アンカー エポキシ樹脂系接着剤(A)			
	ピュア樹脂	製品接着剤		
圧縮強度 (MPa)	109.0	108.0		
引張強度 (MPa)	75.7	45.1		
引張 せん断 接着強度 (MPa)	10.3	7.5		
アンカーの 付着破壊強度 ETAG 001 (MPa)	_	35.9		

注) アンカーの付着破壊強度 ETAG 001 では、接着系あと施工アンカー (製品接着剤)の常温時の付着破壊強度の試験方法・評価方法を記載しているため、ピュア樹脂の項目は「-」とした。

(2)火災時(高温時)及び火災後(高温履歴後)の 付着破壊強度の試験方法

本実験の試験方法に基き実験で得られた火災時火災 後の付着破壊強度を常温時の予測引張破壊荷重算出式¹⁶⁾ の付着応力度を式(9)の火災時付着破壊強度(τ au,df)と式 (10)の火災後残存付着破壊強度(τ au,re)に置き換えて算出 することで,火災時(高温時)付着破壊強度と火災後(高温 履歴後)残存付着破壊強度を評価することができ,火災時 (高温時)・火災後(高温履歴後)の付着破壊強度の試験方法 の可能性を示していると言える。特に,火災後(高温履歴 後)の残存付着破壊強度は,長期荷重が作用した状態で火 災時(高温時)にその長期荷重を支持し,その後地震動等 の短期荷重が作用した際に,接着系注入方式あと施工ア ンカーを使用した接合部材が損壊しないことを耐火設 計時に行うためのものでもある。また,火災後(高温履歴 後)の接着系注入方式あと施工アンカーを使用した接合 部材の再使用性の検討においても重要となる。

■付着破壞時火災時(高温時)引張荷重 Ta3pu,df (N)

$$T_{a3pu,df} = \tau_{au,df} \cdot \pi \cdot d_a \cdot l_e$$
(9)

■付着破壊時火災後(高温履歴後)残存引張荷重 T_{a3pu,af}(N) T_{a3pu,af} = τ au,r_e ・π ・ d_a ・ l_e (10)

τ au,df:火災時(高温時)付着破壊強度(N/mm²)

τ au,re:火災後(高温履歴後)残存付着破壊強度(N/mm²)

5. まとめ

本研究は,長期部材接合を想定し,市場で広範に使用 されている接着系注入方式あと施工アンカーのエポキ シ樹脂系製品接着剤(A)(カートリッジ型)について,火災 時(高温時)及び火災後(高温履歴後)の付着破壊強度の載 荷加熱実験を実施し,その付着破壊強度試験方法の適用 の可能性を示した。

6. 今後の課題

接着系注入方式カートリッジ型のあと施工アンカー は、 火災時(高温時)及び火災後(高温履歴後)の実験や 研究は極めて少なく、未だ未解明な部分が多い中、限ら れた実験的研究ではあったが、その結果に基いた付着破 壊強度の算出を行い、付着破壊強度の試験方法を提案し た。今後とも、実際の適用を考えた鉄筋径(異形鉄筋の 形状)・埋込み長さ・コンクリート強度・高温暴露時間・ 荷重載荷条件・接着剤など様々なパラメータや条件につ いての同様の実験を継続する必要がある。また、今後、 ピュア樹脂・製品接着剤の高温時、高温履歴後の物性値 の検討を行い、樹脂・接着剤の高温時・高温履歴後の物 性値と接着剤の付着破壊強度との相関性について分析 し、常温時を含めた高温時付着強度発現のメカニズムの 理論的解析的解明を試みる必要がある。さらに、接着系 注入方式あと施工アンカー(カートリッジ型)の高温時 高温履歴後の実大の加熱載荷実験を行い、その結果に基 いた実験的解析的検討も必要である。

参考文献

 川西泰一郎: ひばりが丘団地におけるルネッサンス 計画1-住棟単位での改修技術の開発,独立行政法人 都市再生機構都市住宅技術研究所, Vol. 48, No.10, pp.34-pp.40, コンクリート工学, 2010.10

- 2) 大和征良,渡辺一弘,辻和幸,高橋宗臣,山口陽二:既存RC系建築物による改修工法の周辺環境影響評価に関する実験的研究,既存壁式構造集合住宅におけるあと施工アンカー工事・躯体の切断撤去工事の騒音,振動,粉じん比較検証実験とその適用性,日本建築学会大会学術講演梗概集,C-2,構造IV,pp.1081-1084,
- 大森正秀他:あと施工アンカーの長期許容応力度に 関する研究,その1 研究概要,日本建築学会大会学 術講演梗概集,C2,構造IV,pp.635-636,2011.8
- 4) 相葉雅史他: あと施工アンカーの長期許容応力度に 関する研究, その2 付着強度, 日本建築学会大会学 術講演梗概集,C2, 構造IV, pp.637-638, 2011.8
- 5)日本建築学会:火害診断および補修・補強方法指針・ 同解説,2015
- 6) 大和征良,池田憲一:高性能エポキシ樹脂系注入方式 接着系あと施工アンカーの火災時及び火災後の付着 破壊強度に関する実験的研究,日本建築学会大会学術 講演梗概集,防火,pp.87-88,2015.9
- 7) 大和征良,池田憲一:長期部材接合を想定した接着系 注入方式あと施工アンカーの高温履歴後の残存付着 強度に関する実験的研究,日本建築学会大会(九州)学 術講演梗概集,防火,pp.105-106,2016.8
- 8) 瀬戸口英恵,阿部隆英,高瀬裕也,佐藤眞一郎,高橋 宗臣,佐藤貴志:湿式コアドリル工法によるあと施工 アンカーの性能確認実験(その2)注入式アンカーを 用いた付着性能実験,日本建築学会学術講演梗概集 (北陸), pp.149-150,2010 年9月
- (一財)日本建築防災協会:既存鉄筋コンクリート造建 築物の耐震診断基準・改修設計指針・同解説 2017, 2007年7月
- 10) (一社)日本建築学会:構造材料の耐火性ガイドブック 2017, 2017年2月
- REPORT No. 26033756-HIT-HY 200-A&R on Hilti HIT-HY200injection systems in conjunction with concrete reinforcing bar and subjected to fire exposure, CSTB, 2014
- 12) (一社)日本建築学会:鉄筋コンクリート構造計算規
 準・同解説 2018, 2018年12月
- 13) (一社)日本建築学会:各種合成構造設計指針・同解説2011, 2010年11月
- 14)日本樹脂施工協会:樹脂注入施工ハンドブック, 2.1.2 建築・土木用エポキシ樹脂, (3)耐熱性, 1)熱老化性, pp.19-pp.20, 1988.4
- 15) ETAG 001 : Metal Anchors for Use in Concrete, Part 5: Bonded Anchors, 2013
- 16) 大和征良,山本泰稔,近藤龍哉:接着系あと施工アン カーの予測引張破壊荷重に関する実験的研究,コンク リート工学年次論文集,pp.1399-1404,Vol.35,No.2,2013