論文 フレッシュコンクリートの 2 次元流動解析におけるコンクリートポ ンプの筒先移動の自動化に関する基礎的研究

三島 直生*1·鹿毛 忠継*2·松沢 晃一*3

要旨:本研究では、コンクリート工事の生産性向上を目指して、2次元のリアルタイム流動解析手法の開発を 進めている。本報では、将来的なフレッシュコンクリートの打込み作業の自動化を目指し、その際に不可欠 となるフレッシュコンクリートの投入位置であるコンクリートポンプの筒先の移動を自動化するための新た なプログラムの開発を試みた。その結果、比較的単純なアルゴリズムにより数値解析上の筒先移動の自動化 が実現できることが明らかとなった。

キーワード:フレッシュコンクリート,壁型枠内流動,2次元流動解析,筒先移動,自動化施工,機械化施工

1. はじめに

将来的な労働者不足の対策が緊急の課題となっている 建設業において、コンクリート工事は最も生産性の改善 が遅れている分野の一つであり、早急な対策が求められ ている¹⁾。

コンクリート工事における生産性向上および品質確保 を目的として、フレッシュコンクリートの型枠内流動を 数値解析により予測するための研究が多く行われている ²⁾が、一般的な工事の大多数で使用されている普通コン クリートの振動締固めやポンプの筒先移動などを再現す ることのできる解析手法はほとんどない^{3),4)}。

本研究では、これらの複雑な状況をシミュレートする ことを目的として、フレッシュコンクリートの流動解析 をリアルタイム化し、コンクリートポンプの筒先および 振動機の移動を、実施工と同じようにフレッシュコンク リートの流動状況を確認しながら解析内で行える手法を 開発した。図-1 に解析の実行画面の例を示す。その結 果、2 次元解析ではあるものの、実施工におけるコンク リートの打込み手順が解析的に再現できることが確認さ れた⁵。

同解析手法の適用可能性は既報 ⁵で示した通り多岐に わたるが、その中でもコンクリート工事の省力化に資す る技術としては自動化(機械化)施工が挙げられる。こ こで、フレッシュコンクリートの打込み段階の施工の自 動化は、現場施工だけでなく、プレキャスト工場におけ る打込みにも適用できるため、ほぼ全てのコンクリート 工事に関係する技術となり得る。

上記のリアルタイム解析手法において,解析開始後の 人為的な作業はコンクリートポンプの筒先(コンクリー トの吐出口)および振動機の移動のみである。本報では, フレッシュコンクリートの型枠内への打込み作業の完全

図-1 既報で開発したリアルタイム解析の画面の例 (iPad を使用)⁶

な自動化の前段階として,比較的設定条件の単純なコン クリートポンプの筒先の移動を自動化するための新たな プログラムの開発を試みた。

2. 解析プログラムの概要

2.1 リアルタイム流動解析プログラム

本報では、コンクリートポンプの筒先の移動に関する 部分以外は、既報⁵で開発したフレッシュコンクリート のリアルタイム流動解析プログラムをそのまま用いた。

同解析手法の特徴としては、リアルタイム解析である こと、フレッシュコンクリートの構成モデルは物理的に 厳密なものではなく、通常の流動状態(高粘度流体)、流 動の停止状態(剛体)、および振動下の流動化状態(完全 流体)の3つの状態で表現されること、2次元解析であ るため鉄筋は設定した鉄筋径と同一直径の円形要素で再 現されていること、コンクリートポンプの筒先(コンク リートの吐出口)および振動機はマウスドラッグによっ て解析実行中に任意に移動できること、などが挙げられ

*1 国土技術政策総合研究所 住宅研究部住宅ストック高度化研究室 主任研究官 博士(工学) (正会員)

- *2 (国研)建築研究所 材料研究グループ グループ長 工博 (正会員)
- *3 (国研)建築研究所 材料研究グループ 主任研究員 博士(工学) (正会員)

る。ただし、本報ではコンクリートポンプの筒先は自動 制御されるためマウスドラッグはできない仕様となって いる。また、本報で開発した筒先移動の自動化プログラ ムの処理が付加されたことにより、解析実行時には粒子 数の増加とともに解析が実時間よりも遅れ、解析結果を 描画しながらの操作は可能ではあるもののリアルタイム 性は失われている。後掲の基本水準の解析では、解析上 の終了時刻が 6min であるのに対し,実際の解析終了は3 倍の18min 程度となっている。

2.2 コンクリートポンプの筒先移動の自動化プログラム 図-2 にコンクリートポンプの筒先移動プログラムの フローチャートおよび解析結果のイメージを,表-1に 本解析の設定項目および設定値の一覧を,図-3に打上 がり高さ判定のための設定内容の説明図を示す。解析開 始時のコンクリートポンプの筒先(以下,筒先)の位置 は型枠の右上部とし,移動は水平方向のみとした。解析 開始と同時に設定した吐出速度で筒先からコンクリート の吐出が開始され、2.1 節で示した流動解析が実行され る。

図-2 コンクリートポンプの筒先移動プログラムのフロー チャート(左)および解析結果のイメージ(右)

表-1 本解析の設定項目および設定値の一覧

設定項目	設定内容	本報における 設定値 ^{*8}
型枠条件*1	壁高さ (mm)	2000
	壁幅 (mm)	3000
	壁厚 (mm)	100
配筋条件 ^{*1,*2} (壁メッシ ュ筋)	直径 (mm)	13
	型枠からのオフセッ	
	ト (mm)	<u>100</u> , 200
	配筋ピッチ (mm)	
筒 先 の 自 動 制御条件* ³	筒先の移動速度 (m/s)	0.5
	筒先を移動するまで	
	の打上がり高さの上	0.5, <u>1.0</u>
	限值 Δl_{max} (m)	
	打上がり高さのチェ	0.5
	ック間隔 (s)	
コンクリー トの物性	粒子半径 (mm)	20
	viscousStrength (-)*4	<u>0.25 (SL18)</u> ,
	viseousburengun ()	0.15(SL8)
	dampingStrength (-)	0.5
	流動停止速度 (m/s)*4	<u>0.002(SL18)</u> ,
		0.005(SL8)
	密度 (kg/m³)	2500
その他	振動機による流動化	300
	範囲(半径)(mm)	
	コンクリートの吐出	5.0, <u>10.0</u>
	速度 (m³/h)	
	コンクリートの上限	0.5(加振無),
	体積 (m ³)	0.6(加振有)
打上がり高 さ判定のた めの設定 ^{*3,*5} (図-3参照)	筒先の移動判定時に	
	無視する粒子の流速	0.01
	の下限値(m/s)*6	
	打上がり高さの判定	
	のためのx方向のグリ	粒子径と同じ
	ッドの間隔(mm)*'	
	高さ方向に孤立した	粒子半径の 5倍
	粒子を除外する粒子	
	間隔	

[注]*1:柱についても実装されているが本報では使用 しないため割愛,*2:x,y方向を独立して設定でき るが本報では同一の値とした、*3:本報における新 規設定項目,*4:SLは対応するスランプを示す, *5:本解析の設定画面で変更できない項目,*6:こ の速度以下の粒子の y 座標値から打上り高さを判 定,*7:両側の型枠際の1グリッドは無視,*8:複 数の値のある項目は本報で要因として用いた水準 で下線は基本水準を示す

図-3 打上がり高さ判定のための 設定内容の説明図

 Δl_{max}

 Δl_{max}

 Δl_{ma}

表-2 解析の要因と水準

要因	水準
コンクリートの流動性 : スランプ (cm)	<u>18,</u> 8
打上がり高さの上限値 <i>Δ l_{max}</i> (m)	<u>1.0</u> , 0.5
配筋間隔(mm)*1	<u>100</u> , 200
コンクリートの吐出速度 (m³/h)	<u>5.0</u> , 10.0
振動締固めの有無	<u>無し</u> ,有り

[注]: 基本水準を示す, *1:この間隔のメッシュの交点に 2D 鉄筋として円形鉄筋要素を配置

筒先の移動判定は、筒先直下のコンクリートの打上が り高さ Δ1 が予め設定した打上がり高さの上限値 Δ1maxを 超えた時点とし、型枠内のその時点でのコンクリートの 打上がり高さが最も低い位置の直上に移動する。打上が り高さの最も低い位置が複数存在する場合には、その中 のランダムな位置に移動する。また、筒先直下の打上が り高さが型枠高さを超えた場合にも、その時点でのコン クリートの打上がり高さが最も低い位置の直上に移動し、 あらかじめ設定されたコンクリートの上限体積を超えた 場合には解析を終了する。ここで、筒先の移動時もコン クリートは吐出し続ける。

打上がり高さの判定は、図-3 に示すように型枠内を 粒子径と同じ幅のグリッドに分割し、各グリッドに存在 するコンクリート粒子のy座標の値から求めた。ただし、 壁効果により型枠際では粒子が充填されない場合がある ため型枠際の1グリッド分は判定対象から除外した。ま た、鉄筋などにコンクリート粒子が付着して他のコンク リート粒子から浮いた状態で停止した場合にも打上がり 高さの判定誤差となるため、同一グリッドの下部の粒子 と粒子半径の5倍以上離れている場合には打上がり高さ の判定から除外した。

流動状態のコンクリート粒子で打上がり高さを判定した場合に、判定後に流動して打上がり高さが変化するため、ある程度流速が低下したコンクリート粒子のみを打上がり高さの判定対象とすることとし、本報ではこの打上がり高さの判定時に無視する流速の下限値を 0.01m/sとした。

本解析において, 2.1 節で示した流動解析の時間刻み は 1/60s であり, 上記の筒先移動に関する判定は 0.5s ご とに実施した。

3. 壁型枠へのコンクリートの打込みシミュレーション 3.1 解析の要因と水準

表-2 に、本報で実施した解析の要因と水準を示す。 以下に示す解析結果で水準の明示のないものは基本水準 としている。振動締固め有りの水準については、筒先移 動後にそれまでに打ち込まれた振動経験のない範囲に振 動締固めを行った。また、振動締固め有りの水準に限り、 型枠外にコンクリートがオーバーフローした場合にも振

図-4 スランプの異なる解析結果の時刻歴 の比較

動締固めを行った。本解析上の振動締固めによる流動化 は、ドラッグされた振動機アイコンの周囲(本報では半 径 300mm の範囲)のフレッシュコンクリートが完全流 体となることで表現される。

コンクリートの上限体積 Vは、振動締固め無しの水準 では鉄筋周囲の未充填部の発生の影響を加味して 0.5m³ とし、振動締固め有りの水準では 0.6 m³とした。

解析には iPhone7 を用い,以下に示す解析結果の画像 は解析実行時の iPhone7 の画面をキャプチャしたもので ある。

3.2 解析結果とその考察

(1) コンクリートの流動性

図-4 に、コンクリートの流動性としてスランプを変 化させた解析結果の比較を示す。ここで、各スランプ値 に対応する流動パラメータ(viscousStrength および流動 停止速度)は既報^のの実験により決定された結果を用い た。解析結果の画像は筒先の移動開始直後のものを示し、 赤矢印はおおよその筒先の移動距離を示す。

図によれば、いずれのスランプの結果においても、筒 先の移動については概ね 2.2 節で示した想定通りの挙動 をして打込み完了に至っている。すなわち、打上がり高 さ 1.0m (型枠高さの半分)に達した段階で筒先が打上が り高さの低い位置に移動して順番に充填していることが わかる。鉄筋位置に白く未充填部が残っているが、これ は締固めを行っていないためである。スランプの違いの 影響としては、スランプ 8cm の方が流動勾配が大きく、 また充填形状もいびつになっており、打込み完了後にコ ンクリート内部に大きな空隙が残存しているのがわかる。 また、筒先の移動回数もスランプ 18cm が 6 回であるの に対し、スランプ 8cm は 8 回と多くなっている。これは、 スランプ 8cm の流動勾配が大きく水平方向の流動距離が 少ない点を、筒先の移動で補っているためである。

(2) 打上がり高さの上限値 △ l_{max}

図-5に、打上がり高さの上限値 *Δlmax* を 0.5m とした 解析結果を示す。図-4のスランプ 18cm (*Δlmax*: 1.0m) の結果と比較すると、筒先の移動回数が 6 回から 12 回 と倍増するという予想通りの結果となっている。また、 351.9s の時点で型枠左上部よりコンクリートがオーバー フローしている。これは、型枠高さに関する筒先移動の 判定が、コンクリートの流速が低下するまで行われない ためにタイムラグが発生し、型枠高さを超えても筒先が 移動しないためであり、プログラムの修正が必要な点と 言える。

図-6 に、図-5 の条件と全く同一の解析を繰り返し た結果を示す。打重ね形状は図-5 と異なり、筒先の移 動回数も 15 回と多くなっている。この違いは筒先から 吐出されるコンクリート粒子が筒先の幅 (200mm)の範

囲内のランダムな位置から排出される設定となっている ためであり、本解析では設定条件が全て同じでも毎回解 析結果が異なる⁸。ただし、実施工においても各種条件 が同条件で打ち込んだとしても完全に同じ結果とはなら ず、ある程度の変動幅を持った挙動としてとらえる方が 実用上は妥当と考えられる。

(3) 配筋間隔

図-7 に、配筋間隔を 200mm とした解析結果を示す。 図-4 のスランプ 18cm (配筋間隔:100mm) と比べると、 流動勾配が小さく水平方向の流動量が明らかに多いこと がわかる。その結果、筒先の移動は型枠両端近くに1往 復したのみとなった。充填量が型枠上端に達していない のは、配筋量が少なくなり未充填部が減ったにもかかわ らずコンクリートの上限体積 Vを一定としているためで ある。

(4) 吐出速度

図-8 に,吐出速度を 10m³/h とした解析結果を示す。 図-4のスランプ 18cm (吐出速度:5 m³/h) と比べて筒 先移動までの打上がり高さが大きくなっており,それに 伴って筒先の移動回数も減っている。これは吐出速度の 増加に伴い型枠内のコンクリートの流速も増加して流速 が下がりにくくなるため,打上がり高さの上限値 *Δ1max*の 判定が遅れること,およびそのタイムラグの間に打ち込

図-9 振動締固め有りの解析結果

まれるコンクリート量も多いことなどの影響が考えられる。

(5) 振動締固め

図-9に、振動締固め有りの解析結果を示す。ここで、 吐出速度は10m³h としている。振動締固めは筒先が移動 した後に実施したが、165.5sの図にある通り型枠右上部 からコンクリートがオーバーフローしたために、この段 階でも振動締固めを実施している。振動締固めにより打 上がり高さが変化し、筒先の移動にも影響を及ぼすため、 振動締固めの実施により結果はより複雑なものとなる。 解析結果からは、振動締固めにより流動勾配が緩やかと なり、コンクリート内部の未充填部が除去されているの がわかる。

4. まとめ

本報では、コンクリートポンプの筒先の移動を自動化

するための新たなプログラムの開発を行った。解析結果 からは、比較的単純なアルゴリズムを用いているにもか かわらず、計画した筒先の移動が再現できており、将来 的な自動化施工への適用可能性が示された。一方で、リ アルタイム性が失われていること、および型枠外へのオ ーバーフロー時の対処など、プログラムの修正が必要と なる課題も示された。

コンクリートの流動性や配筋条件などの各種の条件 により、コンクリートの打重ね形状や筒先の移動回数が 変化する結果が得られており、極めて基礎的な内容では あるものの、施工条件、作業内容および製品の品質の関 係を得るための方法の1つが示唆されたと思われる。

将来的には、ポンプ筒先および振動機の移動の工数が フレッシュコンクリートの流動性や配筋・型枠条件によ ってどのように変化するのかを解析的に示すとともに、 例えばこの工数を最小化するなどの条件に基づいた最適 な施工方法を解析的に得ることも可能となると考えられ る。

参考文献

- i-Construction 委員会報告書, i-Construction 委員会, 2016.4
- コンクリートの確実な施工のためのPDCAサイクル 研究委員会報告書,日本コンクリート工学会,2016.9
- 浦野真次,根本浩史,山田義智,崎原康平:締固め を行うコンクリートの充填性評価への流動解析手

法の適用に関する研究,土木学会論文集 E2, Vol.73, No.2, pp.179-190, 2017.

- 4) 浦野真次、山田義智:充填シミュレーションによる これからのコンクリートの施工性評価:バイブレー タを使用するコンクリートの充填状況の予測シス テムと BIM/CIM との連携、セメント・コンクリー ト, Vol.853, pp.34-41, 2018.3
- 5) 三島直生、山田義智、崎原康平、谷口遼:フレッシュコンクリートの壁型枠内流動に関する2次元リアルタイム解析手法の開発に関する基礎的研究、コンクリート工学年次論文集、Vol. 39(1), pp. 1213-1218, 2017.6
- 6) https://www.youtube.com/watch?v=NLFJFlc2mLE (閲 覧日:2020.1.10)
- Naoki MISHIMA, Yoshitomo YAMADA, Kohei SAKIHARA and Ryo TANIGUCHI: Fundamental Study on Development of Two-Dimensional Real-Time Flow Simulation Method of Fresh Concrete in Wall Form, CIB World Building Congress 2019, Hong Kong, Ab0099, 2019.6
- 8) 三島直生、山田義智、崎原康平:フレッシュコンク リートの型枠内流動に対する2次元リアルタイムシ ミュレータの開発、平成29年度建設施工と建設機 械シンポジウム論文集・梗概集、日本建設機械施工 協会、pp.57-60、2017.