論文 RC 方立壁の気密性能に着目した住機能維持限界に関する基礎研究

尹 ロク現*1・真田 靖士*2・桃井 良尚*3

要旨:本稿では日本の典型的な住宅の外壁として設けられる RC 壁の気密性能に焦点を当てている。地震に より損傷した RC 壁の基礎的な気密性能を把握するため,典型的な RC 壁を模擬した実大試験体に対する載 荷および気密測定を繰り返す実験を行った。実験結果では,流量係数 a は一般開口の 0.6 より小さい 0.09~ 0.22 の範囲であった。さらに,C 値の制限値と気密試験結果に基づいて,対象建物の住機能性を維持できる 限界を気密性能の観点から評価した。

キーワード:鉄筋コンクリート,方立壁,気密性能,ひび割れ,流量係数,C値,住機能維持限界

1. はじめに

近年の RC 建物の地震被害^{1),2)}では非構造壁の損傷に より継続使用が困難となる事例があるものの,現行の設 計基準の継続使用性は RC 建物の住機能性と直接な関係 は希薄である。本研究では RC 建物の継続使用性につい て,住機能性を維持できる限界(以下,住機能維持限界 と称する)の観点から再評価することを大きな目的とし, 建築環境工学の視点を考慮して再考する。

国土交通省は 2000 年施行の住宅の品質確保の促進等 に関する法律に基づいて、住宅性能表示制度 3)を運用し ている。非構造壁が地震により損傷すると、ひび割れや 欠損部を通じて空気の移動が可能になるため、とくに温 熱環境,空気環境,音環境に影響し得ると考えられる。 壁面を貫通する空気量を表す物理量として気密性能があ る。気密性能を示す指標の一つが C 値(相当隙間面積) であり、次世代省エネルギー基準 4では日本を気温に基 づいて地域区分し、例えば近年の地震被災地域である東 北地方では C 値を 2cm²/m²,比較的に温暖な熊本地方で はC値を5cm²/m²に制限する推奨がある。この気密性能 の指標を応用して、被災した RC 建物の住機能維持限界 を評価する試みが本研究の骨子である。これまで、損傷 を受けた RC 壁の気密性能を適切に評価する方法は確立 されていないため、本研究で実験的に明らかにしている 5)

以上のような背景を踏まえ、本稿では地震により損傷 した RC 壁の基礎的な気密性能を把握するため、典型的 な RC 壁の一部を模擬した実大試験体に対する繰り越し 載荷と気密測定を実施した。RC 壁の住機能維持限界を 評価することを念頭に、損傷量と気密性能の関係につい て分析した結果を報告する。

2. RC 壁の気密性能の評価実験の計画

2.1 試験体計画

本研究の試験体は文献 6)の SRC 集合住宅(以下,研究 対象建物と称す)の最下層部における柱梁架構のうち, 外構面の RC 壁を模擬する実大模型である。試験体(以 下,W2 試験体と称す)配筋図を Fig.1 に示す。W2 試験 体は実大スケールであり,形状は壁厚×幅が 150mm× 1,050mm,壁の高さは 1,800mm である。想定建物の方立 壁と同様の配筋を有し,縦・横筋は D10@200 ダブル,壁 端部の縦筋および隅角部の開口補強筋のみ D16 ダブルで ある。なお,W2 試験体の横筋にはフックなどの特別な 構造詳細は設けられていない。試験体の構造諸元を Table1 に、コンクリートおよび鉄筋の材料特性を Table2

*1 大阪大学大学院 工学研究科地球総合工学専攻 助教 博士(工学) (正会員)
*2 大阪大学大学院 工学研究科地球総合工学専攻 教授 博士(工学) (正会員)
*3 福井大学学術研究院工学部門 講師 博士(工学)

Table.1 Details of the specimen		
Parameter	Specimen	
t×D	150×1050	
height	1800	
Vertical	D10@200 double	
rein.	(D16 double for edge)	
Horizontal	D10@200 double	
rein.	D10@200 double	
Rein.	D16 double	
for opening		

Unit: mm

Table.2 Material properties of concrete			
Specimen	Compressive strength	Elastic modulus	
Speemien	27.7	2.69×10^{4}	
		Unit: N/mm ²	

Table.3 Material properties of reinforcement

Type Vield stress Tensile Elasti	с
strength modul	us
D10 375 506 1.85×	105
D16 351 510 1.83×	105

Displacement transducer for restraint of axial elongation

Fig.3 Loading history

および Table3 にそれぞれ示す。

2.2 載荷計画

載荷装置と載荷履歴を Fig.2 および3 にそれぞれ示す。 試験体は載荷フレームに PC 鋼棒で固定し,反力壁に取 り付けた水平ジャッキにより静的漸増正負交番繰り返し 載荷を行った。ここで,水平力は壁の層間変形角 R(壁 の水平変位δを壁の高さhで除した値)に基づき変位制 御し, Fig.3 に示す載荷履歴を与えた。既往の研究のより, この種の方立壁が地震により水平変位が強制変位される と方立壁の軸方向伸びが周辺架構に拘束されて圧縮軸力 が作用することが明らかになっている。本研究では文献 7)に示された研究対象建物をおよそ表現する解析モデル に基づいて,方立壁の軸方向伸びに対する軸剛性を 10000N/mm と仮定し、2 台の鉛直ジャッキ(Fig.2) によ り同軸方向伸びに比例させて圧縮軸力を作用した。なお、 方立壁上部の回転((δ_s - δ_N)/l) が 0 となるように鉛直ジャ ッキを制御した。

2.3 ひび割れによる損傷の測定計画

本実験の主目的は壁の損傷量と気密性の関係に関する 実験データを取得することである。そのため、壁面に生 じるひび割れによる損傷量、特にひび割れの総面積を定 量的に把握する必要がある。ひび割れを測定する範囲は、 Fig.1 に示す壁両面の 1,500mm×750mm の領域とし、 125mm 間隔のグリットを描画した。計測対象とするひび 割れは載荷時に発生した全ひび割れであり、各グリッド のひび割れ幅と長さを Fig.3 に赤字で示したサイクルの 除荷時(残留変形角 *R*,)に計測した。本計測はクラック スケールを用いて目視により行った。ひび割れ幅の計測 はグリットごとに最大と最小のひび割れ幅を測定し、各 グリット内におけるひび割れ幅の平均値 gWi を評価とし た(Eq.1)。

$$_{g}W_{i} = \left(_{g}W_{imax.} + _{g}W_{imin.} \right)/2 \tag{1}$$

ここで, gWimax: i 番グリット内の最大ひび割れ幅 (mm), gWimin: i 番グリット内の最小ひび割れ幅 (mm) である。

上記のように本実験では壁のひび割れの総面積を評価するため、計測した各グリッドの平均ひび割れ幅にひび割れ長さを乗じ、これを Eq.2 のように積分して壁のひび割れの総面積 *eAD*を求めた。

$_{e}A_{D}=\sum (_{g}W_{i}\times$	$_{g}L_{i})$		(2)

ここで, *gLi*.:*i*番グリット内のひび割れ長さ(mm)である。

なお、本研究が気密性を評価する主旨に鑑みて、コン クリートの剥落による開口を無視することはできないた め、コンクリートの剥落が発生した後(載荷⑳)におい ては壁を貫通した鉛直投影面積を Eq.2 より算定した *eAD* に加算した。また、式(1)によるひび割れ幅の平均値 *gWi* はグリッドの寸法による影響を受ける可能性があり、今 後の検討が必要である。

2.4 気密性能の測定計画

気密測定は日本工業規格(JIS) A2201:2003「送風機に

Fig.4 Principle of air leakage testing (depressurization)

よる住宅等の気密性能試験方法」(以下,JISA2201)⁸⁾を 用いた。JISA2201の測定法では Fig.4 に示すように送風 機で室内外の差圧を発生させ、送風機の通気量Qと内外 差圧 ΔP の関係より、通気率a(m³/h)、総相当隙間面積 aA(cm²)、隙間特性値n(無次元)が求められる(Eq.3, 4)。

$$Q = a \Delta p^{1/n} \tag{3}$$

$$\alpha A = Q_{9.8} b$$

ここで, a: 圧力差 1Pa 時の流量 (m³/h· Pa^{1/n}), b: 0.628ρ^{0.5}, ρ: 隙間を流れる空気密度 (kg/m³) である。

本実験では気密測定を減圧法とし, Fig.3 に示すよう赤 色の載荷⑫, ⑩, ⑫の除荷時において試験体の正面に対 して測定した。なお,上記気密測定は試験体が文献 9) の損傷度に達したサイクルで実施した(載荷⑫:損傷度 Ⅲ,載荷⑳:損傷度Ⅳ,載荷㉒:損傷度V)。Fig.5 に本 実験のために製作した気密性能測定システムを示す。整 流管であるピトー管は壁の損傷が小さく流速が小さい場 合において測定が難しいため載荷⑫と⑳においてはオリ フィス(Fig.5(a))を用い,載荷㉒においてはピトー管 (Fig.5(b))で風量を測定した。また,気密測定を行う際 には,Fig.5に灰色の塗潰しで示した測定範囲以外の部分 からは空気が漏洩しないようにブチルテープを用いてシ ーリングした。

3. RC 壁の気密性能の評価実験—実験結果

3.1 水平荷重-水平変形関係および破壊状況

Fig.6に試験体の水平荷重-水平変形関係を,**Fig.7**に 破壊経過をそれぞれ示す。*R*=1/1600radのサイクル(載荷 ①)において壁の上下部分に曲げひび割れが発生した。 *R*=-1/800radのサイクル(載荷④)において壁にせん断ひ び割れが生じた。*R*=-1/400radのサイクル(載荷⑥)では 方立壁の横筋が降伏し,最大耐力-544kNが記録された。 *R*=1/200radのサイクル(載荷⑨)に壁のせん断破壊によ る耐力低下が生じた。

3.2 ひび割れの総面積。みの算定結果

載荷⑫, ⑳, ㉒において, 残留ひび割れの総面積を算 定した。Fig.8 にその評価結果と残留変形角の関係を示す。 ひび割れの総面積は残留変形が進行するとともに増大し た。載荷⑳から㉒にかけてコンクリートの剥落が顕著に なり, 残留ひび割れの総面積が急激に増大した。

3.3 気密性能の測定結果

(1) 通気特性(通気量と差圧の関係)

気密測定器より測定したチャンバー内外の差圧と通 気量の関係を Fig.9 に示す。残留変形の増大に伴い,同 圧力において通気量が増加した。これは残留変形の進行 とともに,ひび割れ幅が大きくなるためである。

(2) 総相当隙間面積 αA

Fig.10 に実験より得られた総相当隙間面積と残留変形 角の関係を示す。総相当隙間面積は一般に単純開口面積 Aに流量係数 α ($0 \le \alpha \le 1$)を乗じたもので表される。 αA の実験値は Fig.9 の実験結果より建物内外(壁の両側) の圧力差 9.8Pa 時の通気量 $Q_{9.8}$ (m³/h)を求め, Eq.4 よ り算出した。同図に示すように総相当隙間面積は残留変 形の進行とともに増加し、特に載荷⑳において総相当隙 間面積が急激に増加した。これは 3.2 節で記述したよう に載荷⑳から⑳にかけてコンクリートの剥落による壁板 の損傷が顕著になったためである。

(3) 隙間特性值 n

隙間特性 n は隙間の状態を表す指標である。一般に, 1~2の範囲の値を取る。隙間が小さい場合は1に近づき, 単純開口の場合は2に近づく¹⁰⁾。Fig.11に示す隙間特性 値は1.21~1.98の範囲であり,残留変形の進行に伴い2に 近づく傾向がみられた。

(4)

Fig.13 Ground floor plan

沖地震で非構造壁の損傷により実際に継続使用が困難と

(4) 流量係数 α

Fig.12 に流量係数と残留変形角の関係を示す。流量係 数は総相当隙間面積を単純開口面積(3.1節のひび割れの 総面積 eAD) で除して算出した。同図に示すように流量係 数は 0.09~0.22 の範囲であり、荷重20以後においておよ そ 0.2 程度で一定であった。

4. 気密性能(C値)に基づく研究対象建物の住機能維持 限界の試算 5)

本章では RC 建物の住機能性を評価することを目的と し、文献 5)の評価方法を用いて、2011 年東北地方太平洋

Fig.14 Details of typical exterior frame

Fig.15 Damage of flat walls⁶⁾

なった研究対象建物について検討する。

4.1 建物の概要

研究対象建物は東北地方太平洋沖地震で被災した 1987年竣工11階建てのSRC構造の集合住宅である。建 物の基準階伏図を Fig.13に示す。建物の高さは約31m, 梁間方向約71m,桁行方向約27mの対称な平面形状であ り、本研究で着目する桁行方向はラーメン構造であり、 ラーメンの柱間に構造躯体と切り離されていない方立壁 を有していた。Fig.14に示すようにスパン内で並列する 掃出し窓の間に幅が約1mの方立壁が配置されていた。

4.2 建物の被害状況 6)

研究対象建物の被害状況については文献6)で詳述され ている。以下では検討に必要な方立壁の被害状況につい てのみ抜粋して示す。

建物の損傷は主に桁行方向で観察され,とくに Fig.15 に示すような方立壁を含む外壁の損傷が顕著であった。 Fig.16 に現地調査で作成した Y4 通り(Fig.13)のひび割 れ図を示す。方立壁に大きな損傷が生じており,とくに 4 階以下では損傷度IV(せん断ひび割れ幅 2mm 以上+鉄 筋の露出)または損傷度V(鉄筋の座屈または破断)の壁

が大半を占めていた。

4.3 RC 建物の機能維持限界に相当する方立壁の損傷量 の試算

研究対象建物の機能維持限界を試算するにあたり,試 算対象を Fig.13 の青枠の居室とし,Fig.14 の方立壁が損 傷するシナリオを設定する。住機能維持限界を気密性能 C 値の推奨値を喪失する限界として試算する。次世代省 エネルギー基準³⁾では気密住宅の基準として,C 値 $5.0(\text{cm}^2/\text{m}^2)$ 以下を地域に応じて制限し ている。C 値は延床面積 S に対する総相当隙間面積 αA の 割合を示す数値であり,Eq.5 のように表現される。

C value = αA/S (5) ここで,α:流量係数(無次元),A:単純開口面積(cm²), S: 延床面積 (m²)

本試算では単純開口面積*A*を方立壁上のひび割れによる損傷量の総面積 *cAD* (cm²) と仮定すると, Eq.6 のように表現できる。

$${}_{c}A_{D} = A = \mathcal{C} \text{ value} \cdot S/\alpha \tag{6}$$

ここで,流量係数 a は従来一般開口で用いられる 0.6¹¹⁾ と 3.3 節(4)の実験結果に基づく 0.2 と仮定する。また,

延床面積は Fig.13 より 58.05m² である。以上より,気密 性能 C 値の制限値を用いて試算した $_{AD}$ を Table4 に示 す。研究対象建物が立地した東北地方では C 値が 2 であ り,住機能維持限界に相当する $_{AD}$ は a=0.6 の場合に 193.5cm², a=0.6の場合に 580.5cm² と評価された。

Table/	Evoluated	function	maintananaa	limita
Table ₄ .	rvaluateu	тинсцон	паппенансе	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

		C value=2	C value $= 5$
cAD	α=0.6.	193.5	483.75
	<i>α</i> =0.2	580.5	1451.25

Unit : cm²

4.4. 実験結果との比較と考察

Table4のように評価した試算対象が住機能維持限界に 達する方立壁の限界損傷量 cAD を 3 章の実験で評価され た損傷量 eAD と比較する。a の仮定に関わらず,方立壁 の損傷量の実験結果が限界値を超過するのは,載荷⑳か ら⑳にかけてすなわち変形角 1/25rad に向かう載荷サイ クルの間であり,コンクリートの剥落により eAD が急増 する過程であることが確認された。これは方立壁の損傷 度としてはV程度に相当すると考えられる。

上記は試算対象の居室のうち,方立壁のみが損傷する シナリオにおいて住機能維持限界を気密性の観点から評 価した例である。RC 建物の住機能維持限界の評価には さらなる多角的な評価が必要との認識であるが,非構造 壁の損傷が顕在化する現在のRC 建物の損傷を鑑みて, 非難を要する建物の判定などへの応用の可能性があると 考えている。

5. まとめ

本研究では、地震により被災した RC 建物の気密性能 に基づく住機能維持限界を評価することを目的とし、実 大 RC 壁試験体の載荷および気密測定を並行する実験を 実施した。また、実験結果に基づき研究対象建物につい て住機能維持限界を試算した。本研究において得られた 知見を以下にまとめる。

- 被災 RC 建物を対象に, RC 方立壁を模擬した試験 体の気密性能評価実験を実施した。実験結果より, 残留変形と総相当隙間面積,隙間特性値,流量係数 の関係を実験的に取得した。
- 気密性能測定の結果, RC 壁のひび割れの流量係数 α は一般開口の 0.6 より小さい 0.09~0.22 の範囲で あった。また,残留変形の進行に伴い,隙間特性値 は2に近づく傾向がみられた。
- 実験結果より得られた流量係数 (α=0.2)を用い,研 究対象建物の一居室に対して気密性能を維持でき る方立壁の限界の損傷量を試算すると C 値が 2 の

場合にひび割れの総面積が約 580.5cm², C 値が 5 の 場合には約 1451.25cm² と算定された。

4) 本稿の試算の範囲であるが,損傷量の限界値を実験 より算定した損傷量と比較すると,方立壁がせん断 破壊しコンクリートの剥落が顕著になる 1/50rad を 超過する変形を受けると限界に達する結果が得ら れた。

なお、本論文では一体の実験結果のみで検討を行った。 今後はひび割れを高精度に模擬した模型実験および流体 解析を用いてひび割れを有する RC 壁の通気量予測手法 を検討する計画である。

謝辞

本研究は文部科学省科学研究費補助金基盤研究(A)課 題番号17H01306(研究代表者:真田靖士)の助成の下に 実施した。

参考文献

- 日本建築学会:東日本大震災合同調査報告 建築編
 2,2015.1
- 建築技術:建築技術-特集:熊本地震における地震 特性と建築物の被害-, No.803, 2016.12
- 3) 国土交通省住宅局住宅生産課:新築住宅の住宅性能 表示制度ガイド,2016.4
- 一般財団法人建築環境・省エネルギー機構:住宅の 次世代省エネルギー基準と指針,1999.11
- (5) 尹ロク現,真田靖士,桃井良尚:建物の耐震性能評価を目的とする RC 壁の気密性能評価,日本建築学会環境系論文集,Vol.83, No.753, pp.871-881, 2018.11
- 6) 真田靖士, 尹ロク現, 赤堀巧, 小塩友斗, 崔琥:東日本大震災で被災した靭性型コンクリート系建物の被害シミュレーション-RC 造方立壁が靭性型コンクリート系建物の構造性能に与える影響-,日本建築学会構造系論文集, Vol.80, No.713, pp.1145-1153, 2015.7
- 福井紳矢,真田靖士, 尹ロク現: RC 造方立壁に地震
 時に作用する軸力の解析的検討,日本建築学会構造
 系論文集, Vol.84, No.765, pp.1465-1474, 2019.11
- 8) 日本規格協会:送風機による住宅等の気密性能試験 方法(JIS A 2201:2003), 2003.1
- 日本建築防災協会:震災建築物の被災度区分判定基 準および復旧技術指針,2016
- 気密測定技術普及委員会:住宅の気密性能試験方法, 建築環境・省エネルギー機構,2004
- 日本建築学会:実務者のための自然換気設計ハンド ブック,2013.9