論文 PC 鋼棒で緊結した鋼板サンドイッチエ法により補強した RC 柱の曲 げ耐力に関する解析的研究

稲葉 淑貴*1・金田 一男*2・中田 幸造*3・山川 哲雄*4

要旨:本文は, PC 鋼棒で緊結した鋼板サンドイッチ工法により補強した RC 柱の曲げ耐力に関する解析的研 究成果を示すものである。ファイバーモデル解析(FMA)手法を用い, FMA の解析結果と金田らの曲げ耐力の 略算式による計算結果と本年度の実験結果との比較を行い,解析結果と略算式における計算結果及び実験結 果との相互の妥当性を検証した。解析対象の既存 RC 柱断面は実験結果のある 175×175mm とし,配筋・コン クリート強度等は実験結果に併せて設定した。また,PC 鋼棒の緊張力が RC 柱の曲げ耐力に与える影響につ いて PC 鋼棒緊張ひずみをパラメータとして FMA を行い,その結果,PC 鋼棒の緊張力の影響は小さかった。 キーワード:既存 RC 柱,耐震補強,鋼板サンドイッチ工法,曲げ耐力,ファイバーモデル解析

1. はじめに

著者らはPC鋼棒で緊結した鋼板サンドイッチ工法(以 降:鋼板サンドイッチ工法と称する)の研究に取り組み, 補強した既存 RC 柱の耐震性能を検討し、その成果を発 表した¹⁾。更に, 鋼板サンドイッチ工法で補強した RC 柱 の曲げ耐力の略算式(以降:略算式)を提案し²⁾,ファ イバーモデル解析(Fiber Model Analyses: FMA)の結果と の比較検討を行い,略算式の計算結果と解析結果がよく 一致していることを確認した^{3),4)}。しかし, 文献^{3),4)}に示 した FMA に用いた増打コンクリートの横拘束効果は, 補強鋼板を近似的に松村ら 5の角形鋼管に充填されたコ ンクリートとして評価した。鋼板サンドイッチ工法で補 強した RC 柱は、補強方向と垂直となる方向に鋼板を設 置しないため、FMAの仮定と実物との乖離が生じていた。 しかし、増打コンクリートは補強鋼板を介して PC 鋼棒 の横拘束を受けているが、その緊張力が曲げ耐力に及ぼ す影響は過去の研究で考慮されていない。過年度の試験 体製作では PC 鋼棒にひずみゲージを貼り付け、ひずみ ゲージの導入ひずみ量で PC 鋼棒緊張時のトルク管理を 行ったが、PC 鋼棒のシース管にモルタルが滲入すると、 PC 鋼棒のひずみ測定が困難となる。一方, 鋼板サンドイ ッチ工法で補強した RC 柱の一体化を確保するために, 山川らが提案した合成極厚無筋壁補強法(以降:THW 工 法) では PC 鋼棒に手締め可能な 1000 のひずみを導入 している ^{6,7)}。このような観点から, PC 鋼棒の導入ひず みが、鋼板サンドイッチ工法で補強した RC 柱の曲げ耐 力へ及ぼす影響について明らかにする必要がある。

本研究は FMA により PC 鋼棒による緊張力を能動的 横拘束圧として評価し,解析結果と略算式の計算結果と の比較検討を行い,解析手法の妥当性を検証した。また, これらの解析結果及び計算結果を用いて,本年度で実施 した実験結果との比較検討を行った。

PC 鋼棒の緊張力の有無による影響について,試験体の PC 鋼棒の導入ひずみ(0~1200µ)と軸力比(0.1~0.3)を変 えた FMA によるケーススタディを行い,導入ひずみに よる曲げ耐力などへの影響を明らかにした。ここでは, その解析結果を報告する。

2. 曲げ耐力に関する略算式の概要

鋼板サンドイッチ工法で補強した既存 RC 柱断面及び その断面のひずみ・応力分布を図-1 に示す³⁾。増打コン クリートが既存 RC 柱と一体化して挙動し,曲げモーメ ントに対して平面保持仮定が成り立ち,断面に作用する 軸力のつり合い条件が満足しているものと考える。圧縮 縁コンクリートの終局ひずみ *εc*=0.3%と仮定し,中立軸 の初期値 *xn0*を仮定して各主筋位置での引張ひずみ *εsi* を 計算する。更に, *σsi=E・εsi* によって各位置の主筋応力度 を計算する。

*1 有明工業高等専門学校 専攻科 建築学専攻(学生会員) *2 有明工業高等専門学校 創造工学科 建築コース教授 博士(工学)(正会員) *3 琉球大学 工学部工学科 建築学コース准教授 博士(工学)(正会員)

*4 琉球大学 名誉教授 工博(正会員)

曲げ圧縮を受けるコンクリートの応力分布を等価応 カブロックに置き替え、ブロック形状係数を k₁=k₃=0.85 とする。補強された断面に作用する軸力 N 及び主筋・コ ンクリートに生じる応力の合計がゼロとなる中立軸 x_n を図-2 に示すフローに従って試行錯誤的に求め、その 時の中立軸 x_nを式(1)で表す。また、その時の各軸力が圧 縮縁に対する曲げモーメントは鋼板サンドイッチ工法 で補強した試験体の曲げ耐力であり、式(2)で表す。

$$x_n = \frac{N + \Sigma a_i \sigma_{si}}{k_1 k_3 b_2 F_{c,add}} \tag{1}$$

 $M_u = \Sigma a_i \sigma_i J_i + (0.5 + \beta) ND - 0.5 k_3 b_2 (k_1 x_n)^2 F_{c,add}$ (2) ここに、 $F_{c,add}$ は次頁の表-1 に示す増打コンクリート の圧縮強度 $\sigma_{B,add}$ を用いて計算する。他の記号は図-1 に 示す通りである。

3. FMA 手法の構築

FMA を行う際に、鋼板サンドイッチ工法で補強した既 存 RC 柱の断面は、図-3 に示すように、増打コンクリ ート部分と既存 RC 柱部分から構成される。増打コンク リート部分を更に横拘束効果が期待できない領域(a)と 期待できる領域(b)に区分できる。領域(a)では、PC 鋼棒 位置から補強された断面端部までの範囲(si)で補強鋼板 の曲げ剛性が小さいため、横拘束効果が期待できないも のと考える。しかし、PC 鋼棒の緊張力は 45°方向に分散 することが考えられ, 主動側圧として評価できる。一方, 既存 RC 柱が増打コンクリートによって拘束され、その コンクリートかぶりの剥落などの恐れがないため、計算 の便宜上,全断面を領域(c)とする。図-3に示すβは袖 壁長さ比(造成した袖壁長さ βD/既存 RC 柱のせい D) であり、軸力や主筋比 pgにもよるが、著者らの研究対象 試験体では、β>0.3 程度から鋼板サンドイッチ工法によ り補強した RC 柱の中立軸が増打コンクリート側にシフ トする³⁾ため、既存 RC 柱断面の横拘束効果が無視でき

図-3 FMA 対象の補強後 RC 柱の断面構成と要素分割

る程度である。FMA は鋼板サンドイッチ工法で補強した RC 柱の柱脚位置について行い,断面分割を 40 とする。 実構造物の耐震補強は PC 鋼棒の最大ピッチを 300mm と 想定し,その 1/3 の 100mm を PC 鋼棒の間隔とする。 β =0.5 の場合は1列配置, β =0.75 の場合は 2 列の千鳥配 置, β =1.0 の場合は 2 列配置とする。PC 鋼棒の緊張力 P は,補強鋼板を介して増打コンクリートに均等な能動的 横拘束圧 σ_r を与えるものと仮定し, σ_r を式(3)で表す。

$$\sigma_r = \frac{nP}{\beta D s_2} = \frac{nE\varepsilon A}{\beta D s_2} \tag{3}$$

ここに, n, P, E, ε , A はそれぞれ PC 鋼棒の列数, 緊張力(N), ヤング係数(MPa),導入ひずみ(μ)及び断面積 (mm²)である。また, s_2 は PC 鋼棒の RC 柱高さ方向の間 隔(mm)である。鋼板サンドイッチ工法で補強した既存 RC 柱断面のコンクリートの応力-ひずみ関係は Mander ら⁸⁰の提案式(4)~(6)を適用する。主筋及び帯筋で拘束さ れたコンクリートの圧縮強度 f'_{cc} を式(6)で表し,既存 RC 柱断面のコンクリート[領域(c)]に適用する。

$$f_c = \frac{f_{cc}' X r}{r - 1 + X^r} \tag{4}$$

$$\varepsilon_{cc} = \varepsilon_{co} \left[1 + 5 \left(\frac{f'_{cc}}{f'_{co}} - 1 \right) \right]$$
(5)

$$\frac{f'_{cc}}{f'_{co}} = 1 - 5.17 \left(\frac{f'_l}{f'_{co}}\right)^2 + 5.88 \left(\frac{f'_l}{f'_{co}}\right)^2 \tag{6}$$

٤

表-1 検討対象試験体及びファイバーモデル解析の諸条件

共通事項:[試験体寸法] 既存RC柱断面b×D:175mm×175mm, 補強後の柱幅b₂:235mm, 軸力N = $\eta \cdot b \cdot D \cdot \sigma_B(N)$ [PC鋼棒]9.2 ϕ , a:66.48mm², Es:201GPa, 位置s₁:45mm, 配置間隔s₂:100mm, [D10(D13)主筋]断面積a:71.33(126.7)mm², 降伏強度 σ_v :364(343)MPa, 降伏ひずみ ε_v :0.18(0.20), ヤング率E_s:198(169)GPa,

[柱帯筋]4.0φ, a:13mm², σ_v:191MPa, ピッチ:120mm, Pg:2.95%

式(5)~(6)中の f'_{co} は, 表-1に示す既存 RC 柱のコン クリート圧縮強度 σ_B を用いる。その他の記号は,文献 8) を参考されたい。

PC 鋼棒及び鋼板で拘束された増打コンクリートは, PC 鋼棒のプレストレスによる能動的横拘束圧として Richart ら⁹⁰の静水圧によるコンクリート強度の増大効果 を適用した。図-3に示す領域(b)のコンファインドコン クリート強度を式(7)で表す。

 $f'_{cc} = F_{c,add} + 4.1 \sigma_r$ (7) なお,諸記号は,前掲したとおりである。

4. 検討対象試験体及び解析条件

本年度作製した鋼板サンドイッチ工法で補強した試 験体 R19-1-PP1, R19-1-PP2 及び R19-1-PP3 を解析対象と し,これらの試験体の袖壁長さ比はそれぞれ β=0.5, 0.75, 1.0 である。検討対象試験体の寸法・形状・補強材配置及 びその他の解析条件を表-1 にまとめて示す。表-1 に 示す補強試験体 R19-1-PP2 の PC 鋼棒は千鳥配置である ため, 解析上, その数量を補強試験体 R19-1-PP3 の 7/8 と する。また, FMA に用いるコンクリート強度は, 既存 RC 柱には 15N/mm², 増打コンクリートには, 普通コンクリ ート圧縮強度の上限値 36N/mm²を採用した。

5. 検討結果及び考察

5.1 曲げ耐力の比較検討

表-1 に示す試験体の諸条件を用いて, FMA を実施した。曲げモーメント *M- φD* に関する解析結果(実線)と略算式による計算結果(破線)及び実験結果(R19-1-PP1: ●, R19-1-PP2: ◆, R19-1-PP3: ■)を図-4 にまとめて示す。同図より,解析結果が略算式による計算結果より 僅かに高くなっている。FMA では,補強された RC 柱断面の中立軸を精度よく計算でき,応力中心間距離が略算 式による計算結果より大きくなるからである。

表-2に対象試験体 R19-1-PP1~R19-1-PP3の載荷方向 に対し,最も引張側にある主筋(1段目)~最も圧縮側 に近い主筋(3段目)の各段主筋における引張ひずみの

	R19-1-PP1	R19-1-PP2	R19-1-PP3
1段目	1.73	1.83	2.91
2段目	1.19	1.36	2.28
3段目	0.65	0.89	1.65

FMA 結果(最大曲げ耐力時)を示す。同表より, すべての試験体において, 各段主筋のひずみが鉄筋の降伏ひずみ ε,=0.18%(D10 鉄筋), 0.20%(D13 鉄筋)を超過し, 降伏した結果となった。

一方,図-5に実験結果の一例として,R19-1-PP1の各 位置の主筋のひずみ εと部材角 Rの関係を示し,各主筋 の降伏ひずみを点線で示す。同図より,図中矢印方向に 載荷する場合,1段目と2段目の主筋が降伏しているが, 3 段目の主筋ひずみが小さく降伏に達していない。矢印 と逆方向に載荷した場合も同様に3段目主筋が降伏して いない。このような測定結果は補強後試験体 R19-1-PP2 及び R19-1-PP3 の場合も同様であった。従って,図-4 に 示す FMA 結果に対して実験結果が小さくなっている。 5.2 中立軸に関する検討結果

鋼板サンドイッチ工法で補強した試験体の全主筋が 降伏できるかを把握するために,FMA 手法及び略算式を 用いて,対象試験体 R19-1-PP1~R19-1-PP3 の中立軸位置 を検討した。その結果を表-3 に示す。FMA 結果に対し て,略算式(1)を用いた計算結果の方が大きい。これは曲 げ圧縮を受けるコンクリートの応力分布を等価応力ブ ロックに置き替えて計算したからである。しかし,各試 験体の袖壁長さ βD と比較し,解析結果及び計算結果が 遥かに小さいため,中立軸がすべて増打コンクリートの 領域中にあると言える。従って,対象とする各試験体の 全主筋が引張鉄筋となっている。しかし,本年度の実験 結果は,いずれの補強試験体においても,圧縮側に近い 3 段目の鉄筋は降伏していないため,今後,実験パラメ ータを増やし,その原因を更に究明する必要がある。

表-3 実験条件における中立軸と袖壁長さ *BD*の比較

	R19-1-PP1		R19-1-PP2		R19-1-PP3	
	解析	式(1)	解析	式(1)	解析	式(1)
中立軸 (mm)	33.4	45.8	32.8	43.4	28.7	43.3
βD (mm)	88		131		175	

5.3 PC 鋼棒の初期緊張力による影響

FMA 手法を用いて, PC 鋼棒の導入緊張力の有無が鋼 板サンドイッチ工法により補強した RC 柱の曲げ耐力に 与える影響を検討した。PC 鋼棒の初期ひずみは 0,200µ, 400µ, 600µ, 800µ, 1000µ, 1200µ とし, 既存 RC 柱のコ ンクリート強度を 15N/mm², 増打コンクリート強度を 36N/mm²とした。実験結果との相関性を確認するために, 袖壁長さ比 β=0.50, 0.75, 1.00 の 3 ケースについて検討 した。図-6に、各緊張力での PC 鋼棒による能動的横拘 東圧 σr を示す。β=0.50 と β=1.00 の PC 鋼棒の能動的横拘 束圧は同じであり、これに対して β=0.75 の能動的横拘束 圧は若干大きくなっている。図-6より, PC 鋼棒による 能動的横拘束圧は,導入ひずみ Epc=1000µ の場合, $\sigma_r=1.5$ N/mm²程度であり、増打コンクリートの圧縮強度 36N/mm²の約3%程度しかないことがわかった。PC 鋼棒 の導入ひずみ εω に伴うコンファインドコンクリート強 度 f'cc- 定 関係を図-7, 図-8 に示す。 Epc の増大に伴って σ_r が大きくなるため、 f'_{cc} も大きくなった。

表-1 に示す試験体 R19-1-PP1 ~PP3 の諸条件に併せ て, PC 鋼棒の初期緊張力有無による各試験体の曲げ耐力 への影響を検討した。曲げ耐力の解析結果である *M*-φ*D* 関係を図-9に示す。その結果からわかるように, PC 鋼 棒の初期緊張力有無が補強試験体の曲げ耐力への影響 は非常に少ない。しかし,解析した結果, PC 鋼棒の初期 緊張力がない場合,φ*D*が 1.5 程度付近で曲げ耐力が急 に低下した。これは、図-7、図-8 に示す初期導入ひず み ε_{PC}=0 の場合,コンファインドコンクリート強度 f'ccが ピーク値を超えると大きく低下することによるもので ある。

試験体の形状,配筋は,試験体 R19-1-PP1~PP3 と同じ とし,既存 RC 柱のコンクリート強度を15N/mm²,増打 コンクリート強度を普通コンクリート強度の上限値で ある36N/mm²と仮定し,軸力比がη=0.1,0.2,0.3の3ケ ースについて検討を行い,PC 鋼棒の初期緊張力有無によ る曲げ耐力の影響を更に検討した。その結果を図-10~ 図-12 にそれぞれ示す。軸力比の増大に伴って,曲げ耐 力の増加が見られたが,いずれのケースにおいても PC 鋼棒の初期緊張力による曲げ耐力への影響は少ない。

図-13 は,軸力比が η=0.1, 0.2, 0.3, 袖壁長さ比 β=0.50, 0.75, 1.00 の 3 ケースに対する, PC 鋼棒の初期緊張力変 化による中立軸への影響を示すものである。同図より, 軸力比の増大に伴って,中立軸の値も大きくなることが わかった。

また, PC 鋼棒の初期導入ひずみが大きいほど,中立軸 が小さくなる傾向である。これは,図-7,図-8に示す コンファインドコンクリート強度 f'cc に関係するものと 考えられる。袖壁長さ比が最も小さい β=0.5 の場合にお いても βD=88mm であるため,いずれのケースにおいて も中立軸が増打コンクリート βD の範囲にある。

軸力比が η =0.1, 0.2, 0.3, 袖壁長さ比 β =0.5, 0.75, 1.0 の 3 ケースに対して, PC 鋼棒の初期導入ひずみによる 曲げ耐力の変化を検討した。その結果を図-14~図-16 にそれぞれ示す。これらの図より, PC 鋼棒の初期導入ひ ずみによる曲げ耐力の変化も非常に小さい。

6. おわりに

PC 鋼棒の初期導入ひずみによる能動的横拘束圧を考 慮した FMA 手法を用いて,鋼板サンドイッチ工法で補 強した RC 柱の曲げ耐力,既存 RC 柱全主筋の降伏の有 無,中立軸の発生位置及び PC 鋼棒の初期導入ひずみの 影響について詳細に検討した。得られた結果を以下に示 す。

(1)PC 鋼棒の能動的横拘束圧を考慮した FMA 結果が文 献 3)に示す略算式による計算結果とよく一致している。 (2)中立軸に関する解析結果と計算結果が、すべての補強 試験体について, その増打コンクリート領域に入ってい るため、既存 RC 柱の全主筋が引張鉄筋となっている。 (3)解析結果と計算結果に対し、鋼板サンドイッチ工法で 補強した試験体 R19-1-PP1~PP3 の実験結果が小さかっ た。その理由はこれらの試験体の主筋が載荷実験におい て1列目と2列目しか降伏していないからである。 (4)PC 鋼棒の初期緊張力による検討結果から, PC 鋼棒の 初期導入ひずみは、鋼板サンドイッチ工法で補強した試 験体の曲げ耐力に殆ど影響を与えていない。しかし、PC 鋼棒は補強工事時の鋼板のセパレーターとしての機能, 補強鋼板と増し打ちコンクリート及び既存 RC 柱との一 体化を図る機能があり、今後、PC 鋼棒の直径・間隔・初 期導入ひずみなどを詳細に検討する必要がある。

謝辞

本研究の載荷実験は,有明高専の坂田冬真,高倉健人, 中山翔太,開祐之介の各氏の卒業研究の一環として行っ た。実験の際に,有明高専専門技術職員田中三雄氏,技 術職員松原征男氏,平田裕次氏の協力を得た。試験体製作に関しては,三池生コンクリート工業株式会社から多大のご支援を頂いた。なお,本研究は平成30年度公益財団法人大林財団の研究助成(代表者:金田一男)を受けて実施した。ここに記して関係者各位に謝意を表す。

参考文献

- 金田一男,他4名:PC鋼棒で緊結した鋼板サンドイ ッチ補強法により補強した低強度 RC 柱の予備試験, 日本建築学会九州支部研究報告,第 57 号, pp.529-532, 2018.3
- 金田一男,他4名:PC鋼棒で緊結した鋼板サンドイ ッチ補強法により補強した既存 RC 柱の耐力評価, 日本建築学会大会学術講演梗概集(東北), p.421-422, 2018.9
- 3) 金田一男,他4名:PC鋼棒で緊結した鋼板サンドイ ッチ補強法で補強した既存 RC 柱の曲げ耐力略算式 の適用性に関する研究 -その1 新設そで壁付き RC 柱の曲げ耐力に対する検証の試み-,日本建築学 会大会学術講演梗概集(北陸), p.421-422, 2019.9
- 4) 稲葉淑貴,他4名:PC鋼棒で緊結した鋼板サンドイ ッチ工法で補強した既存 RC柱の曲げ耐力提案式の 適用性に関する研究 -その2 計算結果・解析結果 と実験結果による検証-,日本建築学会大会学術講演 梗概集(北陸), p.423-424, 2019.9
- 5) 松村弘道,伊藤茂樹:角鋼管に充填されたコンクリートの圧縮強度,日本建築学会大会技術講演梗概集C(熊本), pp.1627-1628, 1989.10
- 6) 作山寛子,山川哲雄, Pasha JAVADI,奥村建成:低 強度 RC フレームの耐震補強に関する実験的研究, コンクリート工学年次論文集, Vol.32, No.2, pp.337-342, 2010
- 7) Tetsuo YAMAKAWA, Md. Nafiur RAHMAN, Kozo NAKADA and Yoichi MORISHITA: Experimental and Analytical Investigation of Seismic Retrofit Technique for a Bare Frame Utilizing Thick Hybrid-walls, 日本建築 学会構造系論文集, 第 610 号, pp.131-138, 2006-12.
- J.B.Mander, M.J.N. Priestley and R.Park : Theoretical Stress- Strain Model for Confined Concrete, ASCE Journal of Structural Engineering, Vol.114, No.8, pp.1804-1826, Aug. 1988.
- Richart, F. E., Brandtzaeg, A., and Browm, R. L. : A Study of the Failure of Concrete Under Combined Compression Stresses, Bulletin 185, Univ. of Illinois Engineering Experimental Station, Champain, III, 1928