論文 場所打ち可能な UFC で耐震補強した RC 橋脚模型試験体の正負交番 載荷試験

岩本 拓也*1・小林 聖*2・曽我部 直樹*3・山野辺 慎一*4

要旨:既設の RC 橋脚において地震時に塑性化する部分のかぶりを,ひび割れ誘発目地を含む場所打ち可能 な超高強度繊維補強コンクリート(UFC)で置換することで,断面寸法や自重の増加を伴うことなく変形性能 を向上させる耐震補強工法の開発を進めている。本工法による補強の有無と軸方向鉄筋比をパラメータとし た RC 橋脚模型試験体の正負交番載荷試験を実施し,本工法の補強効果について検証した。その結果,コアコ ンクリートの損傷や軸方向鉄筋の座屈が抑制されることで,変形性能が向上することを確認した。 キーワード:耐震補強,超高強度繊維補強コンクリート,RC 橋脚,変形性能

1. はじめに

切迫する巨大地震の被害を最小限に留めるため,橋梁 の耐震補強が進められているが,様々な制約条件により 既存の耐震補強工法の適用が困難な場合がある。例えば, 一般的な耐震補強工法である RC 巻立て工法は,既設橋 脚よりも断面寸法や自重が増加するため,河積阻害率や 既設基礎への負担が増加することが制約となる場合があ る。また,鋼板巻立て工法は,重機作業が必要になるこ とから,狭隘な施工条件での適用は困難であった。

以上のような背景より、断面寸法や自重を増やすこと なく、狭隘な施工条件下でも容易に施工できる耐震補強 工法の開発が求められている。これに対し筆者らは、既 設 RC 橋脚の地震時に塑性化する領域のかぶりコンクリ ートを、ひび割れ誘発目地を含む場所打ち可能な超高強 度繊維補強コンクリート(以下,UFCと称する)で置き 換えることで、RC 橋脚の変形性能を向上させる耐震補 強工法(以下、本工法と称する)の検討を行っている¹⁾。 本研究では、本工法による補強の有無と軸方向鉄筋比を パラメータとした RC 橋脚模型試験体の正負交番載荷試 験を行い、本工法の補強効果について検証した。

2. 耐震補強工法の概要

本工法は、UFC 製プレキャスト型枠を用いた高耐震性 RC 橋脚^{2),3)}で得られた知見を、既設 RC 橋脚の耐震補強 に応用したものである。図-1に、本工法の概要を示す。 既設 RC 橋脚の塑性ヒンジ部分のかぶりコンクリートを 除去した後に、場所打ち可能な UFC とひび割れ誘発目地 で置換することで、かぶりコンクリートの圧壊や座屈し た鉄筋のはらみ出しが抑制され、かつ、ひび割れ位置を 制御して塑性ヒンジを形成させることで、断面寸法を変 えることなく既設 RC 橋脚の変形性能を向上させること が期待できる。また、UFC に無機系増粘剤を混入し、こ て塗りによる場所打ち施工を可能とすることで、大規模 な資機材や施工スペースを必要せず、一般的な左官工に よる施工が可能である⁴。

3. 実験概要

3.1 試験体概要

本工法の補強効果を検証するため,実橋脚を 1/4 に縮 小した 3 体の橋脚模型試験体の正負交番載荷試験を行っ た。試験体概要図を図-2 に,試験ケースおよび試験体

鹿島建設	(株)	技術研究所	土木構造グループ	研究員 工修(正会員)
鹿島建設	(株)	技術研究所	土木材料グループ	主任研究員 工修 (正会員)
鹿島建設	(株)	技術研究所	土木構造グループ	上席研究員 工博(正会員)
鹿島建設	(株)	技術研究所	土木構造グループ	專任部長 工博(正会員)
	鹿島建設 鹿島建設 鹿島建設 鹿島建設 鹿島建設	鹿島建設(株) 鹿島建設(株) 鹿島建設(株) 鹿島建設(株)	鹿島建設(株) 技術研究所鹿島建設(株) 技術研究所鹿島建設(株) 技術研究所鹿島建設(株) 技術研究所鹿島建設(株) 技術研究所	鹿島建設(株)技術研究所土木構造グループ鹿島建設(株)技術研究所土木材料グループ鹿島建設(株)技術研究所土木構造グループ鹿島建設(株)技術研究所土木構造グループ

諸元を表-1 に示す。使用した材料強度試験結果の一覧 を表-2 に示す。

試験体形状は全試験体で同じであり,600×1200mmの 長方形断面とせん断スパン長 2400mm を有する。試験ケ ースは、補強の有無と軸方向鉄筋比をパラメータとした 3 ケースである。No.1 は、平成2年度の道路橋示方書⁵⁾ (以下,道示と称する)で設計されたことを想定した無 補強試験体であり、No.2 は No.1 を本工法によって補強 した試験体である。No.1, No.2 の軸方向鉄筋には SD295 D13 を使用し、かぶりは 50mm、軸方向鉄筋比は 0.7%と した。帯鉄筋には SD295 D6 を使用し, 120mm 間隔で配 置した。中間帯鉄筋は配置せず、帯鉄筋比は 0.04%、帯 鉄筋体積比は 0.01% とした。No.3 は, No.2 の軸方向鉄筋 比のみを変更した試験体であり、曲げ破壊が先行する範 囲における最大の軸方向鉄筋量として軸方向鉄筋比を 1.2%とした。No.2とNo.3の実験結果を比較することで、 かぶりが負担する圧縮応力や軸方向鉄筋の座屈に伴うは らみ出し力が大きい場合の変形性能の向上効果や破壊性 状の違いについて検証する。

No.2 と No.3 では, 柱基部から 1.0D 区間 (D:断面高さ 600mm) を補強区間とし, 表面から 50mm までのかぶり 部にひび割れ誘発目地を断面の全周に配置した上で,

写真-1 目地の設置 写真-2 UFCの塗付け

UFCを塗り付けることで補強を行った。本工法では,エ トリンガイト生成系 UFC に無機系増粘剤を混入するこ とで,こて塗り可能な粘性を付与したものを使用した。 UFC の配合や塗付け方法の詳細については,文献 1),4) を参照されたい。ひび割れ誘発目地にはアングル材(30 ×30×2mm)を使用し,2本のアングル材を用いて,図 -1(b)に示すような目地構造とした。ひび割れ誘発目地 の配置間隔は,コンクリート標準示方書の(以下,RC示 方書と称する)から算定される曲げひび割れ間隔よりも 小さくなるように 180mm とし,補強領域に目地を3段 設けた。なお,柱基部のフーチングコンクリートについ ても,橋脚躯体の補強部分で支圧破壊が生じることがな いように,橋脚躯体の表面から 100mm の範囲のフーチ ングの天端を UFC とアンカー筋(SD345 D16)で補強し た。写真-1,2には,No.3の補強作業状況を示す。

3.2 載荷方法

写真-3 に載荷装置を示す。水平方向の油圧ジャッキ は、2基のヒンジを介して反力壁に固定し、試験体幅方 向に2台設置した。鉛直方向の油圧ジャッキは、球座と スライド支承を介して梁フレームに固定し、試験体の曲

げ変形を拘束することなく、543kN(軸応力度 0.75N/mm²) の一定の軸力を作用させた。

水平方向には、0.25Py、0.5Py、0.75Py(Py: 材料強度を 用いた軸方向鉄筋降伏荷重計算値)の各荷重で正負1回 ずつの繰返し載荷を行った。その後、Pyまで載荷した際 に計測された載荷点変位 & を基準とした同一振幅の繰返 し回数3回の振幅漸増型載荷波形(図-3)を変位制御で 作用させた。表-3 に、各試験体の P_vおよびδ を示す。 3.3 計測項目

水平荷重および鉛直荷重については、ロードセルによ り計測した。載荷点変位と軸方向鉄筋の抜出し変位は変 位計により計測した。試験体内部の軸方向鉄筋、帯鉄筋 にはひずみゲージを設置し、コンクリートおよび UFC の 水平ひずみはコンクリートゲージ、目地部における目開 き量はπ型変位計によって計測した(図-4)。

実験結果と考察

4.1 水平荷重 - 載荷点変位関係と破壊性状

図-5 に各試験体の水平荷重と載荷点変位の関係を示 す。写真-4~6には、各試験体の損傷状況を示す。

(1) No.1

No.1 では,変位 7.4mm 付近で軸方向鉄筋が降伏ひず みに到達し,変位 39.9mm で最大荷重 278kN を示した。 その後,86,(変位45.6mm)の3回目載荷時に、軸方向 鉄筋の座屈に伴って基部から200~300mmの範囲のかぶ りが剥落し、降伏荷重以下まで水平荷重が低下した。試 験終了後、剥落したかぶりを除去し、試験体を観察した ところ, 柱基部のコアコンクリートが圧壊する様子が確 認された。

(2) No.2

No.2 では,変位 8.3mm 付近で軸方向鉄筋が降伏ひず みに到達し, No.1 で荷重が低下した変位 45.6mm 以降も 安定して荷重を保持し、変位 50.4mm (8&) に到達した 時点で最大荷重 287kN を示した。

補強部の損傷状況を見ると、補強区間内においては, 目地部以外に曲げひび割れは確認されず,9δ,までは補強 部の顕著な損傷も確認されなかった。10 δ, の3回目載荷 時に、柱基部から1段目と2段目の目地間における圧縮 側補強部がはらみ出し、降伏荷重以下まで水平荷重が低 下した。試験終了後、補強部をはつり出して試験体を観 察したところ、コアコンクリートにおいても目地設置箇 所以外に曲げひび割れは発生しておらず、圧縮側でも健 全性を保っていた。また,フーチングの補強部分も健全 性を保っていた。

(3) No.3

No.3 では、載荷点変位 11.8mm 付近で軸方向鉄筋が降 伏ひずみに到達した後に、載荷点変位 53.0mm (5&) に 到達した時点で最大荷重 424kN を示した。

ひび割れ性状や損傷過程は No.2 と同様であり,補強区 間内においては、目地部以外に曲げひび割れは確認され なかった。6δ,の3回目載荷時に、柱基部から1段目と 2段目および2段目と3段目の目地間で圧縮側補強部が はらみ出し、降伏荷重以下まで水平荷重が低下した。試 験終了後、補強部をはつり出して試験体を観察したとこ

写真-4 No.1(左:8δy-3 右:試験終了)

写真-6 No.3(左:6δ_y-3 右:試験終了)

ろ, No.2 と同様に、コアコンクリートやフーチング補強 部は健全性を保っていた。

4.2 変形性能の評価

図-6 に、各試験体の骨格曲線の実験結果と平成 29 年度道示^つにより算出した骨格曲線を示す。表-4には、 各限界状態変位の実験結果と道示式による計算結果の一 覧を示す。

各試験体の限界状態変位は,星限ら⁸⁰の手法を参考に, 新設 RC 橋脚と同様の考え方で評価した。ここで,限界 状態2に相当する変位は,繰返し回数3回の載荷のうち, 1回目載荷時と3回目載荷時の水平耐力の比率が0.85を 下回らず,かつ,図-7に示すとおり,2回目載荷時と3 回目載荷時のエネルギー吸収量の比率が0.9を下回らな いことを目安とした。限界状態3に相当する変位は,水 平耐力が保持できなくなった時点とした。各限界状態変 位の計算値は,No.1とNo.3を未補強RC 橋脚と仮定し, 道示で規定される RC 橋脚の荷重 - 変位関係⁷に基づい て算出した。

No.1 の限界状態 2 に相当する変位の実験結果は δ_{els2} =39.9mm (7 δ_{r}),計算結果は δ_{s2} =29.5mm であり,限界 状態 3 に相当する変位の実験結果は δ_{els3} =45.6mm (8 δ_{r}), 計算結果は δ_{s3} =38.6mm であった。実験結果と計算結果で は、1~2 δ_{r} 程度の差異があるものの、道示式によって変 形性能を概ね評価できていると言える。

写真-5 No.2(左:10δy-3 右:試験終了)

図-7 2,3回目載荷時のエネルギー吸収量の比率

表-4 限界状態変位の実験結果と計算結果

No.2 の限界状態 2 および 3 に相当する変位の実験結果 は、それぞれ&ss=56.7mm(9&)と&ss=63.0mm(10&) であった。No.1 の実験結果と比較すると、各限界状態で 1.4 倍程度変位が大きくなっており、No.1 の諸元では、 本工法で補強することで、変形性能が約 40%向上するこ とが確認された。

No.3 の限界状態2および3に相当する変位の実験結果 は、それぞれ&₄₅₂=53.0mm(5&)と&₄₅₃=63.6mm(6&)で あった。No.3と同一諸元のRC試験体の試験は実施して いないため、同一諸元のRC試験体の計算結果と比較す ると、実験結果は計算結果の1.7倍程度であった。No.2 では、実験結果はNo.1の計算結果の1.6~1.9倍程度で あったことから、No.3においても、No.2と同程度に変形 性能が向上したと考えられる。以上より、軸方向鉄筋比 0.7%~1.2%の範囲においては、軸方向鉄筋比に拘らず、 本工法によって同程度の変形性能の向上効果が期待でき ることが確認された。

4.3 軸方向鉄筋ひずみ分布と塑性化領域

図-8 に,正側載荷時に軸方向鉄筋が初降伏した時点 および載荷点変位が 30mm に到達した時点における軸方 向鉄筋ひずみの分布図を示す。図中の黒線で囲われた領 域は,UFCの補強区間を示す。No.1 では,柱基部付近の みが降伏しており,塑性化領域は同箇所に限定されてい る。No.2, No.3 では,軸方向鉄筋が降伏した時点では, No.1 と顕著な差異は確認されなかった。載荷点変位 30mmの時点では,柱基部から 300mm 程度までの領域が 塑性化しており,塑性化領域は補強区間内に限定されて いた。

試験終了後に,軸方向鉄筋の座屈長を目視で計測し, 帯鉄筋間隔の整数倍で整理した結果を表-5 に示す。 No.1 と No.2 を比較すると,座屈長は同じであった。一 般的に,軸方向鉄筋の周囲に巻立てコンクリートや鋼板 等の拘束体を設けると、拘束の度合いに応じてひずみの 局所化が生じる⁹が、そのような傾向は確認されなかっ た。また、No.2 と No.3 を比較すると、No.3 の座屈長の 方が大きい。通常の RC 柱部材では、道示の塑性ヒンジ 長の算定式⁹から分かるように、軸方向鉄筋の径が大き くなると軸方向鉄筋の座屈長は大きくなるが、本工法で 補強した試験体でも同様の傾向が確認された。

以上より,本実験においては,本工法により補強された RC 柱部材の塑性化領域は,通常の RC 柱部材と同等とみ なすことができる。

4.4 ひび割れ誘発目地の挙動

図-9に、No.2とNo.3の各載荷時点における目地の目 開き量分布を示す。両試験体ともに、柱基部から1段目 と2段目の目地で目開きが生じており、柱基部から 300mm 程度の領域で曲げ変形が生じていたと考えられ る。前節において、本工法で補強された柱部材の塑性化 領域は通常のRC部材と同等であることを示したが、こ れは、ひび割れ誘発目地が存在することで、曲げ変形が 柱基部に局所化しなかったためと考えられる。

図-10に、No.2の各目地の目開きと鉄筋応力度との関係を示す。目開きに対応する鉄筋応力度は、目地近傍の 鉄筋ひずみゲージの値を材料試験結果に基づいて応力に 換算したものである。同図中には、RC示方書の曲げひび 割れ幅算定式⁵から算出した曲げひび割れ幅を破線で示 す。柱基部から2段目と3段目の目地では、目開き量は 計算値以下であった。しかし、柱基部から1段目の目地 の目開き量は、計算値よりも大きくなった。これは、RC 示方書では、軸方向鉄筋のフーチングからの抜出しが考 慮されていないためと考えられる。そこで、実験で計測 したフーチング内の軸方向鉄筋ひずみを積分することで、 軸方向鉄筋の抜出し量を考慮したひび割れ幅を図-10 に黒実線で示す。軸方向鉄筋の抜出しを考慮することで、

ひび割れ幅は計算値以下となり, RC 示方書によってひ び割れ幅を推定できる可能性が示された。

4.5 補強部の拘束効果

図-11 に、No.1 と No.2 において、かぶりのはらみ出 しが顕著な位置で計測した帯鉄筋ひずみとかぶり表面の 水平ひずみの載荷サイクルとの関係を示す。No.1 では、 限界状態 2 の 7& に到達した時点でコンクリートの水平 ひずみがひび割れ発生ひずみを超え、その後、軸方向鉄 筋の座屈変形が大きくなるに従い、帯鉄筋ひずみが増加 した。No.2 では、限界状態 2 の 9& に時点における UFC と帯鉄筋のひずみは小さく、10& の時点で、軸方向鉄筋 のはらみ出しによる力が UFC の曲げ強度を超えたこと で、UFC の拘束力が喪失したと考えられる。No.1 とは異 なり、軸方向鉄筋の座屈変形が小さい段階では UFC と帯 鉄筋が一体となって軸方向鉄筋を拘束していたため、 No.1 で耐力が喪失した領域においても安定した曲げ挙 動を示したと考えられる。

5. 結論

本研究では、場所打ち可能な UFC とひび割れ誘発目地 によって補強した橋脚模型試験体の正負交番載荷試験を 実施し、本工法の補強効果について検証した。得られた 結論を以下に示す。

- (1)本工法により,道路橋示方書で規定される RC 柱部材の限界状態変位が約40%向上した。軸方向鉄筋比が0.7~1.2%の範囲においては、軸方向鉄筋比に拘らず、変形性能の向上効果がある可能性が示された。
- (2) 補強試験体の補強区間では,曲げひび割れは目地部 以外で確認されなかった。また,コアコンクリートの 損傷が抑制されていた。
- (3) ひび割れ誘発目地によってひび割れが分散し,曲げ 変形が柱基部に局所化しないため,本実験において は,本工法により補強された RC 柱部材の塑性化領域 は,通常の RC 柱部材と同等とみなすことができる。
- (4) ひび割れ誘発目地の曲げひび割れ幅は、軸方向鉄筋の抜出しを考慮することで、RC示方書に従って算出できる可能性が示された。

(5) 本工法で補強した試験体では、軸方向鉄筋の座屈を UFC と帯鉄筋が拘束することによって、大きな変形 領域においても安定した曲げ挙動を示したと考えら れる。

謝辞

本研究は、国立研究開発法人土木研究所と鹿島建設 株式会社の共同研究として実施した「既設部材への影響 軽減等に配慮した耐震補強技術に関する共同研究」の一 環として実施したものであり、御指導頂いた関係各位に 謝意を表する。

参考文献

- 岩本、小林ら:場所打ち可能な UFC を用いた RC 橋 脚の耐震補強工法の基礎的検討、コンクリート工学 年次論文報告集、Vol.41、No.2、pp.967-672、2019
- 山野辺,曽我部ら:高性能塑性ヒンジ構造を適用した高耐震性 RC 橋脚の開発,土木学会論文集, Vol.64, No.2, pp.317-332, 2008.
- 山野辺,河野ら:超高強度繊維補強コンクリート製型枠を用いた高耐震性橋脚の適用-阪神高速大和川線三宝ジャンクション-,橋梁と基礎 Vol.46, No.5, pp.19-24, 2012.5.
- 4) 小林,高木ら:超高強度繊維補強コンクリートの左 官工法への展開に関する実験的検討,土木学会第73 回年次学術講演会,V-104, 2018.
- 5) (社)日本道路協会:道路橋示方書・同解説 V 耐震設 計編, 1990.
- 6) (社)土木学会: コンクリート標準示方書,設計編,2018
- (社)日本道路協会:道路橋示方書・同解説 V 耐震設 計編, 2017.
- 28) 星隈,堺ら:鉄筋コンクリート橋脚の地震時限界状態の評価手法に関する研究,土木研究所資料 No.4262, 2013.
- 9) 井ヶ瀬,緒方ら:壁式橋脚の耐震補強工法に関する 試験検討,構造工学論文集, Vol.43A, pp.1295-1300, 1997.3.