論文 引張力を受けるディスク型シヤキーの力学的挙動と引張耐力評価

石田 雄太郎*1・坂田 弘安*2・佐藤 匠*3・久保田 雅春*3

要旨:本論文では,引張力を受けるディスク型シヤキーの力学的挙動を把握することを目的として,ディス ク型シヤキーおよびディスク型シヤキーを構成するアンカーボルトと鋼製ディスクの引張要素実験を行なっ た。実験結果より,ディスク型シヤキーは通常のアンカーボルトと概ね同等の引張抵抗性能を有することを 把握した。また,ディスク型シヤキーの引張耐力は現行の接着系アンカーボルトの引張耐力評価式により十 分に安全側で評価できることを確認した。さらに,実際のコンクリートのコーン状破壊曲面やアンカーボル トの付着強度を考慮した評価式では,破壊モードも概ね対応して評価できることを示した。 キーワード:シヤキー,アンカーボルト,引張耐力,接合要素,外付け耐震補強

1. 序論

鉄筋コンクリート造建築物の外付け耐震補強には,接 合部が破壊しないように十分なせん断耐力と,ずれ変形 を極力生じさせないように高い剛性が要求される。外付 け耐震補強接合部に用いる接合要素として,一般的に図 -1(a)のあと施工アンカーがある。本論文で対象とする 図-1(b)のディスク型シヤキーはアンカーボルトと鋼製 ディスクを併用した複合型のせん断抵抗要素であり,鋼 製ディスクの支圧抵抗により,あと施工アンカーに比べ て高い剛性とせん断耐力を有する接合要素である。

既往の研究では、ディスク型シヤキーを耐震補強接合 部に適用した部材実験による検証が行われており、ディ スク型シヤキーを外付け耐震補強接合部に用いる場合は せん断力のみを負担させることとされている¹⁾。そこで 筆者らは、外付け耐震補強接合部においてディスク型シ ヤキーをより有効に活用するために、引張力とせん断力 の複合応力下におけるディスク型シヤキーの力学的挙動 についてこれまでに検証している^{2)など}。しかし、引張力 のみが作用する時のディスク型シヤキーの詳細な力学的 挙動については把握できていないのが現状である。

本論文では、ディスク型シヤキーおよびディスク型シ ヤキーを構成するアンカーボルトと鋼製ディスクの引張 要素実験を行い、引張力を受けるディスク型シヤキーの 力学的挙動を把握し、さらに引張耐力の評価について検 証することを目的とする。

2. 実験概要

2.1 試験体パラメータ

試験体パラメータを表-1 に示す。本実験ではディス ク型シヤキーを構成する各要素の挙動も把握するために、 鋼製ディスクの有無,アンカーボルトの有無,アンカー ボルトの埋込み長さ *le*をパラメータとした。また、鋼製 ディスクの径 *Rd* およびアンカーボルトの径 *da* について は、1/1 スケールで *Rd*=90mm, *da*=20mm とし、1/2 スケー ルの試験体も加えて、計 26 体の試験体を作製した。

表-1 試験体パラメータ									
C	F_c	R_d	$h,(h_d)$	t	d_a	le			
Specifien	$[N/mm^2]$	[mm]	[mm]	[mm]	[mm]	[mm]			
φ90-M20-4.5da						$4.5d_a$			
ф90-M20-6da			42			$6d_a$			
ф90-M20-7da	24	90	42	6	20	$7d_a$			
φ90-M20-10da			(19)			$10d_a$			
φ90-M20-12da						$12d_a$			
M20-4.5da						$4.5d_a$			
M20-6da						$6d_a$			
M20-7da	24	-	-	-	20	$7d_a$			
M20-10da						$10d_a$			
M20-12da						$12d_a$			
φ90-1			42						
φ90-2	24	90	42	6	-	-			
φ90-3			(19)						
φ45-M10-4.5da						$4.5d_a$			
ф45-М10-6da			21			$6d_a$			
φ45-M10-7da	24	45	(0.5)	3	10	$7d_a$			
ф45-М10-10da			(9.5)			$10d_a$			
ф45-М10-12da						$12d_a$			
M10-4.5da						$4.5d_a$			
M10-6da						$6d_a$			
M10-7da	24	-	-	-	10	$7d_a$			
M10-10da						$10d_a$			
M10-12da						$12d_a$			
φ45-1			21						
φ45-2	24	45	(9.5)	3	-	-			
φ45-3			(9.5)						
F _c :コンクリートの設計基準強度, R _d :鋼製ディスクの径, h:鋼製ディ									

 T_{c} , T_{c} ,

*1 飛島建設株式会社 耐震ソリューション部 博士(工学) (正会員)

元東京工業大学 環境・社会理工学院 建築学系 大学院生 / 日本学術振興会 特別研究員 DC1

*2 東京工業大学 環境・社会理工学院 建築学系 教授 工学博士 (正会員)

*3 飛島建設株式会社 耐震ソリューション部 (正会員)

図-2 試験体の施工位置 (1/1 スケール,単位:[mm])

2.2 試験体詳細

試験体の施工位置を図-2, コンクリートの材料諸元 を表-2, 鋼材の材料諸元を表-3に示す。また,本実験 では表-4に示す材料諸元を満たす接着剤を使用した。

図-2 に示す 2500mm×1000mm×450mm の鉄筋コン クリート部材を2体作製し,試験体はスケールごとに鉛 直方向に施工した。試験体は湿式コアドリルを用いて接 合面を穿孔し,十分に乾燥させた後にエポキシ系注入式 の接着剤を用いて定着した。また試験体の間隔は,各種 合成構造設計指針³⁾を参考にして,埋込み長さが最も大 きい *le*=12*da* におけるコンクリートのコーン状破壊曲面 の有効水平投影面積*Ae*(直径 500mmの円)を求め,ディス ク型シヤキーとアンカーボルトの試験体はコーン状破壊 曲面が重ならないように 500mm間隔で施工した。なお, 鋼製ディスクの試験体は図-2 に示すようにディスク型 シヤキーとアンカーボルトの試験体の間に施工した。

2.3 載荷方法と計測計画

載荷装置を図-3 に示す。まずスクリュージャッキを 4 台配置し,載荷装置が水平となるように高さを調整し た後に載荷装置を設置した。載荷装置にはセンターホー ルジャッキ,ロードセル,球座を取付け,そこに接続ボ ルトを通して試験体に接続した。載荷は単調載荷とし, 試験体が引き抜けるまで行なった。

変位計の取付け位置を図-4 に示す。高感度変位計を 用いて試験体の鉛直変位(接合面からの抜出し)を二箇所 で計測し、その平均値を δ とした。

表 2	コンクリ	J —	トのお	料諸元
1X 6		/		14700/0

-							
Samiaa	F_c	$\sigma_B = \varepsilon_c$		E_c	σ_l		
Series	[N/mm ²]	[N/mm ²]	[µ]	[N/mm ²]	[N/mm ²]		
φ90 series	24	23.8	1,800	27,500	2.12		
φ45 series	24	22.9	$ \begin{array}{c c} \varepsilon_c & E_c \\ [\mu] & [N/mm^2] \\ \hline 1,800 & 27,500 \\ \hline 1,760 & 26,600 \\ \hline \end{array} $	2.03			
7 · 設計其准論由	「「「「「「「「「「「「「」」」	始度 。・臣	縮強度時の)7\ポル F	・センガ伝		

F_c:設計基準強度, σ_B: 圧縮強度, ε_c: 圧縮強度時のひすみ, E_c: ヤンク6 数, σ_i: 割裂強度 表一3 鋼材の材料諸元

Type of steel	σ_y [N/mm ²]	σ_u [N/mm ²]	ε _y [μ]	E_s [N/mm ²]	EL [%]
M20	376	584	4,930	199,000	9.4
M10	352	583	4,090	189,000	20.0
D16	387	560	2,770	184,000	18.1
* \$	岡製ディスク	クは S45C.	高ナットに	t SWCH の	ものを使用

 σ_y :降伏強度, σ_u :引張強度, ϵ_y :降伏ひずみ, E_s :ヤング係数,EL:伸び

(a) 鋼製ディスク有りの試験体 (1/1 スケール)

(b) 鋼製ディスク無しの試験体 (1/1 スケール) 図-4 変位計取付け位置 (単位:[mm])

表-4 接着剤の材料諸元

Trues of adhesize	d_{ac}	σ_{at}	σ_{ab}	σ_{ac}	E_{ac}
Type of adhesive	[-]	[N/mm ²]	[N/mm ²]	$\begin{bmatrix} \sigma_{ac} & E_{ac} \\ [N/mm^2] & [N/m^2] \end{bmatrix}$	[N/mm ²]
Epoxy resin	1.34	44.3	67.7	110.0	2,220

 d_{ac} : 比重, σ_{at} : 引張強さ, σ_{ab} : 曲げ強さ, σ_{ac} : 圧縮降伏強度, E_{ac} : 圧縮弾性 率

3. 実験結果

3.1 最終破壊状況

まず,ディスク型シヤキーの最終破壊状況を**写真-1** に示す。*l*=4.5*d*_a, 6*d*_aの試験体は,接合面から2*d*_a程度を 境に破壊性状が異なっており,接合面から2*d*_aまでの範 囲ではコンクリートのコーン状破壊,2*d*_aより大きい範囲 ではアンカーボルトの付着破壊がみられた。一方で, *l*=10*d*_a,12*d*_aの試験体は接合面から1~2*d*_a程度の位置でア ンカーボルトが破断した。*l*=7*d*_aの試験体は各スケール で破壊モードが異なった。

次に、アンカーボルトの最終破壊状況を**写真-2**に示 す。アンカーボルトの最終破壊状況は M20-4.5da を除い てディスク型シヤキーと概ね同様の結果であった。M20-4.5da は接合面近傍でコンクリートのコーン状破壊がみ られず、アンカーボルトの付着破壊のみがみられた。

最後に,鋼製ディスクの最終破壊状況を**写真-3**に示 す。全ての試験体において,接合面から 2*d*^a 程度の範囲 でコンクリートのコーン状破壊がみられた。

3.2 引張力一鉛直変位関係

各試験体の引張力 *T*-鉛直変位 δ,関係を鋼製ディスク の有無により比較したものを図-5,埋込み長さにより 比較したものを図-6,鋼製ディスクの同パラメータの 試験体3体で比較したものを図-7に示す。

図-5より、ディスク型シヤキーとアンカーボルトで は剛性や最大耐力、最大耐力時の鉛直変位が全ての試験

体で概ね等しいことが確認できる。これは前述のとおり, 鋼製ディスクの有無によらず接合面から 2da 程度までの 範囲でコンクリートのコーン状破壊が生じるためである。 したがって,ディスク型シヤキーは通常のアンカーボル トと同等の引張抵抗性能を有しているといえる。

図-6より、*le*=10*da*以上の試験体は破壊モードがアン カーボルトの破断となるため概ね等しく、最大耐力到達 後に緩やかに耐力が低下する。一方で、*le*=6*da*以下の試験 体は破壊モードがコンクリートのコーン状破壊やアンカ ーボルトの付着破壊となるため、最大耐力到達後に急激 に耐力が低下する。*le*=7*da*の試験体では、 φ90-M20-7*da* と M20-7*da* はコンクリートのコーン状破壊とアンカーボル トの付着破壊の混合破壊、 φ45-M10-7*da* と M10-7*da* はア ンカーボルトの破断となり、破壊モードが異なるため各 スケールで挙動が異なる。したがって、ディスク型シヤ キーに引張力を負担させる場合はあと施工アンカーと同 様に *le*=10*da* 以上とすることが望ましいといえる。

図-7より, \$45 シリーズは試験体3 体でばらつきは みられなかった.一方, \$90 シリーズは載荷順序による 影響で,他の試験体と接合面近傍のコンクリートのコー ン状破壊曲面が重なったことにより, \$90-1 と \$90-2 の 耐力が低下しており,3 体でばらつきが生じた。

4. ディスク型シヤキーの引張耐力評価

4.1 現行の評価式との対応

ディスク型シヤキーとアンカーボルトの試験体 20 体の実験結果と現行の評価式の対応を検証する。現行の評価式として、各種合成構造設計指針³⁾に示されている接着系アンカーボルトの引張耐力評価式を以下に示す。 ・接着系アンカーボルトの引張耐力 *T_{cal}*

$$T_{cal} = \min(T_1, T_3) \tag{1}$$

・アンカーボルトの母材降伏耐力 T1

$$T_1 = \sigma_y \cdot {}_{sc}a \tag{2}$$

・アンカーボルトの付着破壊耐力 T3

$$T_3 = \tau_a \cdot \pi \cdot d_a \cdot l_{ce} \tag{3}$$

$$\tau_a = \alpha \cdot \tau_{bavg} \tag{4}$$

ここに、 σ_y はアンカーボルトの降伏強度[N/mm²], sca は アンカーボルトの公称断面積[mm²], τ_a は接着系アンカー ボルトの付着強度[N/mm²], d_a はアンカーボルトの径(呼 び径)[mm], l_{ce} は接着系アンカーボルトの強度算定用の 埋込み長さ(= l_e -2 d_a)[mm], τ_{bavg} は接着系アンカーボルトの 設計で用いる基本平均付着強度³)(= 7 $\sqrt{\sigma_B/21}$)[N/mm²], α はへりあきによる低減係数(本実験では 1.0)である。

現行の評価式による計算値 *T*_{cal} と実験値 *T*_{exp} の対応を 図-8 に示す。実験値 *T*_{exp} は現行の評価式による計算値 *T*_{cal} に対して 1.5~4.0 倍程度大きく,十分に安全側で評価 可能であることが確認できる。

4.2 ディスク型シヤキーの引張耐力と破壊モード

本節では,実験結果をより精度よく評価するように現 行の接着系アンカーボルトの引張耐力評価式を改良する。

まず、本実験では接合面近傍でコンクリートのコーン 状破壊が確認されたため、接着系アンカーボルトの設計 では通常扱わないコンクリートのコーン状破壊耐力につ いて検討する。頭付きアンカーボルト等に適用されるコ ンクリートのコーン状破壊耐力評価式³⁾を以下に示す。 ・コンクリートのコーン状破壊耐力 *T*₂

$T_2 = _c \sigma_t$	$\cdot A_c$		(5)

 $A_c = \pi \cdot l_{ce}'(l_{ce}' + D) \tag{6}$

ここに、 $c\sigma_t$ はコーン状破壊に対するコンクリートの引張 強度[N/mm²](ここでは $c\sigma_t=\sigma_t$)、 A_c はコーン状破壊面の有 効水平投影面積[mm²]、 l_{ce} 'は頭付きアンカーボルトの強 度算定用の埋込み長さ($=l_e$)[mm]、Dはアンカーボルト頭 部の直径($=d_a$)[mm]である。

式(6)はアンカーボルトの先端から 45 度の角度でコーン状の破壊曲面が生じる時の有効水平投影面積である。 しかし、3.1 節で示したように、本実験のディスク型シヤ キーおよびアンカーボルトの試験体では、埋込み長さに よらず接合面から 2da 程度の範囲でコンクリートのコー ン状破壊が確認された。よって、接合面から 2da の位置 より 45 度の角度でコーン状破壊曲面が生じると仮定した時の有効水平投影面積を*A*_c'とし,式(7a)より算出する。

また,鋼製ディスクの試験体では,鋼製ディスク底面 とその縁から概ね 45 度の角度でコーン状破壊曲面が生 じていたことから,式(7b)より算出する。

$$A_{c}' = 0.5 \cdot 2\sqrt{2}d_{a} \cdot (2\pi \cdot 2da) - \pi \left(\frac{d_{a}}{2}\right)^{2}$$
$$= \pi d_{a}^{2} \left(4\sqrt{2} - \frac{1}{4}\right) = 5.41\pi d_{a}^{2}$$
(7a)

$$A'_c = \pi \cdot h_d(h_d + R_d) + \pi \left(\frac{R_d}{2}\right)^2 \tag{7b}$$

次に,接着系アンカーボルトの付着強度 τ_a について検 討する。通常の設計では付着強度の下限値を評価する $7\sqrt{\sigma_B/21}$ (有機系注入式の場合)が用いられ³⁾,本実験の1/1 スケールの試験体では 7.45N/mm², 1/2 スケールの試験体 では 7.31N/mm²となる。これらに対して,本実験で唯一 アンカーボルトの付着破壊となった M20-4.5da の実験結 果から付着強度を算出すると 12.65N/mm²となり(**写真**-2(a)の最終破壊状況より $l_{ce}=l_e$ として算出), $7\sqrt{\sigma_B/21}$ より 大きい値となる。以上より,表-4 と同等の材料特性を 有する接着剤を用いることを前提として,式(4)の τ_a を 12.65N/mm²として算出する。

以上の2点を考慮し、コンクリートのコーン状破壊耐 力をT₂'、アンカーボルトの付着破壊耐力をT₃'とした時 の計算値T_{cal}'と実験値T_{exp}の対応を図-9、実験結果およ び算出結果の一覧を表-5に示す。改良した評価式では 1.0~2.0倍程度で実験値を評価できる。また、想定される 破壊モードについても、現行の評価式に比べて多くの試 験体で実験結果と対応している。ここで、ディスク型シ ヤキーとアンカーボルトの試験体ではコーン状破壊耐力 T₂'が最も小さくなるが、3.1節の最終破壊状況を踏まえ ると、コーン状破壊が生じた後にアンカーボルトの破断 または付着破壊で耐力を発揮すると推定される。

			1					55				
		実験結果		現行の評価式 3)による算出結果			改良した評価式による算出結果					
Specimen	T_{exp}	$\delta_{v} _{\mathit{Texp}}$	F.M.	T_1	T_3	T_{cal}	F.M.	T_1	T_2 '	T_3 '	T _{cal} '	F.M.
	[kN]	[mm]	[-]	[kN]	[kN]	[kN]	[-]	[kN]	[kN]	[kN]	[kN]	[-]
ф90-M20-4.5da	69.9	0.35	(2)→(3)		23.4	23.4	(3)			39.7	39.7	(2)→(3)
ф90-M20-6da	110.6	1.70	(2)→(3)		37.5	37.5	(3)			63.6	63.6	(2)→(3)
φ90-M20-7da	132.5	4.37	(2)→(3)	92.1	46.8	46.8	(3)	92.1	14.4	79.5	79.5	(2)→(3)
φ90-M20-10da	142.6 (108.3)	10.76 (0.36)	(1)		74.9	74.9	(3)			127.2	02.1	(2)→(1)
φ90-M20-12da	142.3 (111.9)	10.53 (0.35)	(1)		93.6	92.1	(1)			159.0	92.1	(2)→(1)
M20-4.5da	71.5	0.52	(3)		23.4	23.4	(3)			39.7	39.7	(2)→(3)
M20-6da	104.5	2.16	(2)→(3)		37.5	37.5	(3)			63.6	63.6	(2)→(3)
M20-7da	132.8	4.79	(2)→(3)	92.1	46.8	46.8	(3)	92.1	14.4	79.5	79.5	(2)→(3)
M20-10da	142.3 (90.0)	8.78 (0.29)	(1)		74.9	74.9	(3)			127.2	02.1	(2)→(1)
M20-12da	141.5 (90.7)	7.73 (0.47)	(1)		93.6	92.1	(1)			159.0	92.1	(2)→(1)
φ90-1	23.2	0.11	(2)									(2)
φ90-2	32.0	0.01	(2)	-	-	-	-	-	27.3	-	27.3	(2)
φ90-3	37.7	0.02	(2)									(2)
ф45-М10-4.5da	22.2	0.23	(2)→(3)		5.7	5.7	(3)			9.9	9.9	(2)→(3)
ф45-М10-6da	32.7	1.15	(2)→(3)		9.2	9.2	(3)			15.9	15.9	(2)→(3)
φ45-M10-7da	37.2 (31.4)	3.08 (0.39)	(1)	20.4	11.5	11.5	(3)	20.4	3.4	19.9	19.9	(2)→(3)
ф45-М10-10da	37.2 (33.7)	2.33 (0.45)	(1)		18.4	18.4	(3)			31.8	20.4	(2)→(1)
φ45-M10-12da	36.8 (32.0)	2.98 (0.38)	(1)		23.0	20.4	(1)			39.7	20.4	(2)→(1)
M10-4.5da	23.4	0.35	(2)		5.7	5.7	(3)			9.9	9.9	(2)→(3)
M10-6da	31.7	0.93	(2)→(3)		9.2	9.2	(3)			15.9	15.9	(2)→(3)
M10-7da	36.9 (30.4)	2.44 (0.50)	(1)	20.4	11.5	11.5	(3)	20.4	3.4	19.9	19.9	(2)→(3)
M10-10da	37.7 (32.0)	2.35 (0.46)	(1)		18.4	18.4	(3)			31.8	20.4	(2)→(1)
M10-12da	36.9 (30.7)	3.38 (0.50)	(1)		23.0	20.4	(1)			39.7	20.4	(2)→(1)
φ45-1	11.4	0.01	(2)									(2)
φ45-2	12.3	0.01	(2)	-	-	-	-	-	6.5	-	6.5	(2)
h45-3	123	0.01	(2)									(2)

表-5 実験結果および算出結果の一覧

 T_{eqr} : 引張耐力(実験値,括弧内は降伏耐力), $\delta_{1/teqr}$: T_{eqr} 時の鉛直変位(括弧内は降伏耐力時の鉛直変位), F.M.: 破壊モード((1)アンカーボルトの母材降伏, (2)コンクリートのコーン状破壊,(3)アンカーボルトの付着破壊), T_{edr} , T_{edr} ,

5. 結論

本論文では、ディスク型シヤキーおよびディスク型シ ヤキーを構成する各要素の引張要素実験を行い、以下の 知見を得た。

- アンカーボルトの埋込み長さとコンクリート強度 が同じ場合、ディスク型シヤキーも通常のアンカー ボルトと概ね等しい引張抵抗性能を有する。
- (2) ディスク型シヤキーにおいても *l_e=7d_a* ではコンク リートのコーン状破壊とアンカーボルトの付着破 壊の混合破壊となる場合があるため,引張力を負担 させる場合は通常のアンカーボルトと同様にアン カーボルトの母材降伏となる *l_e=10d_a* 以上を確保す ることが望ましい。
- (3) 接着系アンカーボルトの付着強度は,設計上では $7\sqrt{\sigma_B/21}$ (本実験では $7.31 \sim 7.45 \text{N/mm}^2$)が用いられ るが,付着破壊となった試験体 M20-4.5da の引張耐 力から算出した付着強度は 12.65N/mm^2 であり,設 計用の付着強度よりも大きい値となる。
- (4) ディスク型シヤキーの引張耐力は現行の接着系アンカーボルトの引張耐力評価式を用いて十分に安全側で評価できる。また、実際のコンクリートのコーン状破壊曲面やアンカーボルトの付着強度を考慮した評価式を用いると、破壊モードも概ね対応して評価できる。

今後の課題として,引張耐力をさらに精度よく評価す るために,接合面近傍におけるコンクリートのコーン状 破壊曲面について詳細に検討を行う予定である。

謝辞

本研究の一部は,JST 産学共創プラットフォーム共同 研究推進プログラム(JPMJOP1723)によるものです。また, 室蘭工業大学・高瀬裕也准教授,国土技術政策総合研究 所・毎田悠承氏より大変貴重なご助言をいただきました。 ここに記して深い謝意を表します。

参考文献

- 高瀬裕也,阿部隆英,佐藤貴志,尾中敦義,池田隆 明:ディスク型シヤキーの増設スラブの接合部への 適用性と耐力評価,一鋼製ディスクとアンカーボル トを併用した耐震補強用シヤキーに関する研究ー, 日本建築学会構造系論文集, Vol.80, No.708, pp.297-307, 2015.2
- 2) 石田雄太郎,坂田弘安,高瀬裕也,毎田悠承,佐藤 匠,久保田雅春:一定引張力下におけるディスク型 シヤキーのせん断耐力,日本建築学会関東支部研究 報告集, Vol.89, pp.533-536, 2019.3
- 日本建築学会:各種合成構造設計指針・同解説, 2010.11