論文 鉄骨区間と鉄筋コンクリート区間の境界に鋼製プレートを有する 複合梁の非線形有限要素解析

川崎 健二郎^{*1}·佐藤 良介^{*1}·小澤 潤治^{*2}·中田 寛二^{*1}

要旨: 材端部が鉄筋コンクリート造で中央部が鉄骨造である複合梁で,過去に実験を行った鉄骨区間と鉄筋 コンクリート区間の境界に鋼製プレートを有する試験体に対して,三次元非線形有限要素解析を行った。そ の結果,最大荷重に至るまで荷重変位関係,鉄筋コンクリート区間と鉄骨区間のそれぞれの変位分担および, ひび割れ分布は実験と解析の結果が概ね整合することを確認した。また,曲げモーメント・せん断力を解析 的に求めることで,鉄骨埋込み部分の鉄筋コンクリートに作用する断面力を定性的に評価した。 キーワード:非線形有限要素解析,複合梁,境界プレート,混合構造,片持ち梁

1. はじめに

材端部が鉄筋コンクリート(以下, RC)造で,中央部 が鉄骨(以下, S)造で構成された複合梁は,建築物の柱 を剛性が高く圧縮に有利な RC造,梁を軽量で長スパン 化に有利な S 造で構築でき,力学的合理性に優れている ため古くから注目^{たとえば1)}されている。図-1に示すよ うな既往の S 梁端部を RC 造部分で巻いた,埋込み形式 の複合梁²⁾では,同図(b)に示すようなてこ機構により, S 梁が埋込まれている RC 造部分の先端と埋込み終端に, S 梁から受ける支圧反力が作用する。そのため,当該箇 所に集中的にせん断補強筋を配置することが多い。筆者 らは主に RC 造部分の先端の集中補強筋をなくし,施工 性を向上させるために S 区間と RC 区間の境界に鋼製の プレート(以下, BP)を配し, BP と主筋を緊結した複

*1 東急建設(株) 技術研究所 博士(工学)(正会員)*2 東急建設(株) 技術研究所 工修

合梁(以下,境界プレートを有する複合梁)について研 究を行ってきた³⁾⁴⁾⁵⁾⁶⁾。本論文は境界プレートを有する 複合梁の力学的性状を把握するための解析モデルの構築 を目的とし,境界プレートを有する複合梁に対して実施 した非線形有限要素解析の結果について報告する。

2. 解析概要

解析対象は,過去に報告³⁾⁴⁾した表-1に示す7体の 試験体とした。試験体AはBPを持たない従来の埋込み 形式の複合梁である。試験体B-1からB-9は境界プレー トを有する複合梁で,試験体B-1からB-3はBPとH形 鋼を部分溶け込み溶接により接合したモデル(以下,溶 接タイプ),試験体B-4~B-9はBPとH形鋼を溶接し ないモデル(以下,無溶接タイプ)である。図-2に代 表的な解析モデルを示す。H形鋼は4節点シェル要素, BPおよびコンクリートは8節点ソリッド要素とし、鉄 筋は軸剛性のみを有するコンクリートへの埋込み鉄筋 要素としてモデル化し付着すべりを考慮した。H形鋼・ BPとコンクリート間にはインターフェース要素を設定

表-1 試験体³⁾⁴⁾

-			H- 1-2						
		А	B-1	В-2	В-3	B-4	B-8	В-9	
境界 プレート (BP)	板厚(mm)	— 19				16			
	鋼種	—			490				
	H形鋼との 溶接の有無	_		有	無				
鉄筋 コンクリート (RC)	断面 B×H			440	580(mm)				
	長さ(mm)		8	70	800	1000	1235		
	埋込み部分の せん断補強筋比	0.0058 0.0034			0.0	0.0036 0.0058			
鉄骨 (S)	断面	BI	I-400×1	175×9×1	BH-400×170×9×19				
	非埋込長さ (mm)		2,0)30		2,100	1,900	1,665	
	埋込み長さ (mm)		800		800	1000	800		

表-2 コンクリートの材料特性

	ヤング係数 (MPa)	ポアソン比	圧縮強度 (MPa)	引張強度	引張破壊 エネルギー	
	(()	(MPa)	(N/mm)	
А	22200	0.155	33.9	1.92	0.07610	
B-1	23900	0.163	39.9	2.08	0.08035	
B-2	24400	0.163	41.2	2.12	0.08121	
B-3	24900	0.163	42.8	2.16	0.08225	
B-4	22200	0.141	37	2.01	0.07835	
B-5	21300	0.137	34.5	1.94	0.07655	
B-8	23000	0.146	39.4	2.07	0.08001	
B-9	22900	0.144	38.9	2.06	0.07967	

した。H 形鋼と BP 間は、溶接タイプを剛接合とし、無 溶接タイプは接合せず,接触も考慮しなかった。なお, 本報では試験体のスタブ面から RC 造部分の先端までを RC 区間, RC 造部分先端から載荷点までをS 区間と定 義する (BP を含む)。RC 区間の長さは、表-1の RC の 長さ, S 区間長さは同表の S の非埋込長さに等しく, 両 区間を合わせて試験区間とする。座標系は試験体スタブ 面と材軸の交点を原点とし、材軸方向を x 軸,鉛直方向 を z 軸, 材軸直交方向を y 軸とする右手系である。境界 条件はx-z 平面に関して1/2 対称条件とし、スタブ下端 を完全拘束とした。スタブは図-2に示すように、試験 体断面から 50mm 外側にオフセットした範囲で、スタブ 中 200mm の深さに対して破壊を考慮したコンクリート 要素とし、その他の部分を弾性体とした。荷重は載荷点 のH形鋼フランジをy方向に多点拘束し主点に対して 鉛直下向きを正とする強制変位として与え、実験と同様

無視した。材料定数については,表-2,表-3に示す 通り,コンクリートの引張強度を靭性指針式⁷),引張 破壊エネルギーを土木学会式⁸),その他は材料実験の値 を採用した。なお,鋼材のポアソン比は0.3とした。解 析には汎用構造解析コード DIANA10.0 を使用した。そ の他試験体の詳細については文献³⁴)を参照されたい。

2.1 材料構成則

コンクリートにおける圧縮側の構成則は、ひび割れ前

表-3 鋼材の材料特性

		降伏強度 (MPa)	ヤング (GP	'係数 a)			降伏強 (MPa	i度 ヤン i)	ノグ係数 (GPa)	
A, B-1, B-2	フランシ゛	411	21	3	в л	フランシ゛	397		212	
	ウェフ゛	387	20	203		ウェブ	398		208	
B-3	BP	412	212	2	В-9,	BP	390		212	
		降伏 強度 (MPa)	ヤング 係数 (GPa)					降伏 強度 (MPa)	ヤング 係数 (GPa)	
	主筋	i 477	190	В-4, В-8,		主筋		546	193	
A, B-1, B-2, B-3					せん断補強筋 (埋込み終端)			837	216	
	せん烤	せん断 補強筋 702	1.60	B-9	せ. (:	せん断補強筋 (埋込み部)			163	
	補強筋		108	B-9	せん断補強筋 (RC 非埋込み部)			341	190	

図-3 弾塑性破壊モデル⁹⁾

図-4 一軸圧縮モデル^{9)に加筆}

表-4 各部材角における荷重(kN)

において図-3に示す弾塑性破壊モデル⁹, ひび割れ後 は図-4(a) に示す1軸圧縮モデル⁹とし, 平均引張ひ ずみによる圧縮強度低減は図-4(b) に示す飯塚のモデ ル¹⁰⁾とし,同図に前川のモデルと併記して示した。引 張側の構成則は福浦らによるアクティブクラックモデル を用いた非直交多方向固定ひび割れモデル¹¹⁾を採用し, 1軸引張軟化モデルは図-5に示すHordjikのモデル¹²⁾ とした。ひび割れのせん断挙動は,図-6に示す接触密 度関数モデル⁹とした。鋼材は降伏基準をVon Mises, 降伏後の剛性を弾性剛性の1/100のバイリニアとし,移 動硬化則とした。鉄筋とコンクリートの付着すべりは図 -7に示す島らのモデル¹³⁾とした。鉄筋以外の鋼材と コンクリートとの界面は,文献¹⁴⁾と同様に*f*=0N/mm², *c*=0N/mm², μ =0.65のクーロン摩擦モデルとした(図-8)。

2.2 計算概要

収束計算は、割線剛性法を使用し収束判定はエネル ギーノルムに対して1.0×10⁻¹⁰以下とした。1ステップ の収束計算数の最大値は100回とし、未収束の場合の不 均衡力は持ち越さないこととした。

3. 計算結果

3.1 荷重変位関係

図-9に荷重変位曲線を示す。同図の黒の破線は実験 結果,赤の実線は解析結果である。加えて,表-4に正 負両方向の各部材角における実験および解析の荷重を示 す。ここで部材角とは,載荷点のz変位を試験区間長さ (2,900mm)で除したものである。全ての試験体において, 解析結果の荷重変位曲線は,解析の最大荷重までは実験 結果とおおむね整合している。以下,部分的に不整合の 生じている部分に対して確認する。載荷初期の部材角 (1.0×10⁻³rad, 1.3×10⁻³ rad)では,解析結果の荷重値

部材	角(×	10 ⁻³ rad)	1.0	1.3	2.5	5.0	10.0	20.0	30.0	40.0	66.7
相求	封変位	(mm)	2.9	3.6	7.3	14.5	29.0	58.0	87.0	116.0	193.3
A		Exp.	26.1	30.1	48.1	71.1	112.3	156.4	142.3	83.4	62.7
	+	Cal.	18.7	23.2	42.4	77.2	127.0	179.4	175.9	131.6	135.8
		Exp.	-27.1	-33.1	-54.5	-86.2	-128.7	-186.0	-174.1	-93.1	—
	-	Cal.	-17.3	-21.5	-40.6	-71.8	-123.3	-180.7	-183.3	-133.1	—
		Exp.	31.0	37.6	63.1	101.6	168.2	213.0	222.5	229.1	235.2
D 1		Cal.	26.6	32.1	54.2	96.6	169.7	213.0	216.6	189.1	202.8
B-1		Exp.	-32.5	-39.6	-68.1	-109.6	-182.9	-216.4	-230.9	-237.2	
	-	Cal.	-26.2	-31.8	-53.9	-93.3	-162.8	-216.2	-212.8	-180.1	—
		Exp.	30.8	32.4	59.8	104.3	165.5	212.5	219.5	226.0	229.3
D 2	т	Cal.	26.7	32.6	54.6	97.0	169.4	215.2	215.0	194.2	206.2
B-2		Exp.	-31.9	-39.5	-67.6	-108.6	-177.8	-216.1	-222.5	-233.2	
	-	Cal.	-26.3	-32.0	-54.4	-94.0	-163.4	-217.6	-210.4	-186.0	
	+	Exp.	27.0	31.7	55.7	90.1	166.5	215.1	220.0	225.8	234.3
D 2		Cal.	26.1	32.1	52.7	92.9	159.4	209.2	208.2	183.6	198.5
р-э		Exp.	-30.4	-37.7	-63.6	-105.6	-176.8	-217.0	-225.7	-231.6	—
	-	Cal.	-25.9	-31.5	-52.5	-89.8	-153.4	-210.8	-206.0	-182.0	
	+	Exp.	28.0	34.4	51.2	78.4	130.1	201.2	205.1	196.2	152.1
D 4		Cal.	18.7	24.0	45.3	81.5	134.5	202.6	196.9	144.0	193.3
В-4		Exp.	-29.9	-36.0	-55.0	-84.8	-134.3	-187.7	-190.0	-176.8	—
	-	Cal.	-16.2	-21.4	-43.0	-76.2	-129.8	-192.9	-172.9	-129.5	—
		Exp.	32.0	35.7	58.6	91.1	149.9	210.4	211.4	209.7	154.4
B-8	+	Cal.	24.5	30.6	52.8	94.0	158.3	240.0	237.8	172.8	177.7
		Exp.	-34.1	-40.7	-63.0	-95.4	-150.8	-187.9	-194.2	-153.9	
	-	Cal.	-22.5	-26.9	-51.7	-90.1	-153.5	-235.8	-212.2	-163.0	—
B-9		Exp.	36.2	42.6	60.1	89.3	152.8	209.0	214.3	221.9	227.8
	+	Cal.	25.9	31.4	53.1	96.8	163.3	240.0	236.0	171.0	186.4
	-	Exp.	-37.4	-44.9	-64.5	-97.0	-151.8	-188.9	-194.5	-203.7	—
		Cal.	-23.6	-28.8	-52.8	-91.8	-157.4	-233.4	-203.2	-157.0	—

注)解析の最大値は太字で示す。

が比較的低く評価される傾向にある。これは、鋼材とコ ンクリートとの界面の構成則が、引張強度・粘着力がい ずれも 0N/mm² のクーロン摩擦則であり載荷初期に摩擦 力が生じづらいためであると考えられる。実験結果は正 方向より負方向の同部材角における荷重がわずかに増加 している。これは、鋼材とコンクリートの界面の状態が -z方向へ打設されたコンクリートのブリーディング等の 影響により加力方向の差異が生じているものと考えられ る。解析結果は実験と逆の傾向を示しているが、正加力 の影響により負加力時の荷重が若干減少したものと考え られる。BPを持たない試験体 A のみ、40 × 10⁻³rad 以 降の荷重を過大評価しているが、これは、実験上コンク リートが剥落する等の大きな損傷が生じていたことに 起因すると考えられる。溶接タイプの試験体 B-1, B-2, B-3 の包絡線は、40×10⁻³ rad 以降で解析結果が実験結 果の荷重を過小評価する傾向がみられた。無溶接タイ プの試験体 B-4, B-8 では40×10⁻³rad の部材角でのみ 過小評価する傾向がみられ、試験体 B-9 は試験体 B-1, B-2, B-3 と同様に40×10⁻³rad 以降で荷重を過小評価 している。以上のことから試験体 A を除いたすべての 試験体において40×10⁻³rad 以降で過小評価傾向を示し ていることがわかった。これはコンクリート構成則、鋼 コンクリートの界面構成則の非線形性等を検討する必要 性があるが今後の検討課題としたい。

3.2 各区間の荷重変位関係

図-10に正サイクルの包絡線上における, RC 区間 およびS区間の変位と荷重の関係を示す。ここで各区 間の変位とは、RC 区間において、材軸上のスタブ面と RC造部分の先端とのZ方向の相対変位,S区間において, 材軸上の RC 造部分の先端と載荷点との z 方向の相対変 位である。同図の破線は実験結果,実線は解析結果とし, 青系の色を RC 区間,赤系の色を S 区間とした。試験体 A は各区間とも最大荷重まではおおむね整合する。それ 以降はコンクリートの剥落等の影響により,RC部分の 先端の変位計測ができなかったため実験の変位計測値は ない。溶接タイプの試験体 B-1, B-2, B-3 は剛性低下が 顕著となる以前は荷重・各区間の相対変位ともにおおむ ね整合しており,剛性低下前の各区間の剛性はよく実験 を再現しているといえる。無溶接タイプの試験体 B-4 は 載荷開始から最大変位まで荷重および各区間の変位はよ く対応する。試験体 B-8, B-9 において,実験の最大荷 重は若干小さいが、実験の最大荷重まで各区間の荷重お よび変位はおおむね整合する。

3.3 ひび割れ分布

図-11に解析における正方向最大荷重時のひび割れ 写真と、当該部材角における解析の最大主ひずみ分布を 示す。正方向最大荷重時の部材角は、試験体 B-1 で 30 × 10⁻³rad,試験体 B-1 以外で 20 × 10⁻³rad である。なお、 試験体 B-2 は B-1 と類似したひび割れ分布を呈していた ためデータ記載を省略した。試験体 A は、実験上はせ ん断ひび割れが試験体全体に分布していたが、解析の最 大主ひずみ分布においてもその傾向を確認した。試験体 B-1, B-3 は、実験上のスタブ面から埋込み終端部まで のひび割れ分布,S 梁埋込み部のひび割れ分布ともに解 析の最大主ひずみ分布とおおむね類似している。しかし、 BP 近傍のひび割れは、その他の部分と比較し、軽減傾 向にある実験結果に対して、解析結果は特に上端筋近傍 でのひずみが増加傾向にあり、この点で実験結果との差

図-10 正載荷包絡線上の各区間端部の相対変位

図-11 ひび割れ分布および最大主ひずみ度分布

図-12 FEMによる曲げモーメントおよびせん断力分布

異が生じている。これは,BPの影響を強く受けている と考えられ,3.1 荷重変位関係でみられた荷重の過小評 価に寄与している可能性も考えられる今後の検討課題で ある。試験体B-9のスタブ面から埋込み終端までは曲げ ひび割れが卓越する傾向も解析結果と類似する。

3.4 FEM 解析による曲げモーメント・せん断力分布

図-12に解析の正方向最大荷重時の部材角における 梁全体とH形鋼, RCおよびBPの解析による曲げモー メント図よびせん断力図を示す。当該断面力は,材軸を 基準軸として設定し当該軸の法線方向の応力を積分して 求めたものである。本試験は片持ち梁であるため,部材 全体の曲げモーメント図はスタブ面(x=0)で最大となる 直角三角形の形状となり,せん断力図は一定値となる。 以下,図-12中灰色ハッチングで示すRC区間に埋込 まれたS梁に注目する。試験体Aにおいて埋込部分の 曲げモーメントは緩やかな曲線,せん断力はわずかに極 値が終端側に偏った放物線形状であり図-1の力学モデ ルとやや異なり,文献¹⁵に示されるモデルと類似する。

溶接タイプの試験体 B-1, B-2, B-3 は, BP の位置で H 形鋼の負担曲げモーメントが急減している。これは, BP を H 形鋼に溶接し,かつ主筋と緊結していることか ら,BP を介しコンクリートへの支圧力ならびに鉄筋へ の引張力が作用することで,BP により S 梁から RC 部 分への曲げモーメントが伝達されるためである。(以下, 「BP から RC 造部分へ伝達される曲げモーメント」とす る)このことにより S 梁埋込み部の曲げモーメントの変 化が緩やかになり試験体 A と比較して RC 造部分の負担 せん断力が軽減されている³⁾。またせん断力分布は,曲 線の極値がやや埋込み終端側に偏った曲線形状を呈して いる。試験体 B-1, B-2 は S 梁埋込み部のせん断補強筋 比が異なるが, せん断力分担の顕著な変化はみられない。 試験体 B-3 は, B-1, B-2 と比較して S 梁埋込み長さが 短いが, RC 造部分が受けるせん断力の最大値は試験体 B-1 とほぼ等しい値となる。一般に S 梁埋込み長さが短 くなる場合, S 梁埋込み部分の RC 造部分に作用する最 大せん断力は増大する²⁾が, BP から RC 造部分へ伝達 される曲げモーメントが試験体 B-1 よりも増大したため 結果的に同等程度の最大せん断力を示している。これは, BP から RC 造部分へ伝達される曲げモーメントと S 梁 埋込長さの間に強い関係性があるためと考えられる。

無溶接タイプの試験体 B-4, B-8, B-9 のせん断力分布 は試験体 A と同様に放物線形状となったが,試験体 A よりも RC 造先端のせん断力変化が急峻となり,より緩 やかな放物線形状を示した。これは, RC 先端部の集中 的なせん補強筋よりも, BP が有効にせん断力を伝達し ていることを示しており,解析上 BP の有効性が示され た。S 梁埋込み区間の長い試験体 B-8 のせん断力分布は 緩やかな放物線形状を示し,試験体 B-4 と比較して RC 造部分が受けるせん断力の最大値は減少している。試験 体 B-9 は,試験体 B-4 と同一の S 梁埋込み長さで RC 区 間が長いため,剛性が向上し部材全体に作用するせん断 力が向上し,埋込み区間に作用する曲げモーメントおよ びせん断力は同程度となった。

4. まとめ

材端部が鉄筋コンクリート造で中央部が鉄骨造で構成

されそれらの境界に鋼製プレートを有する複合梁につい て非線形有限要素解析を行った結果,以下の結果を得た。

- 最大荷重までの荷重変形関係は概ね整合したが、部 材角 40 × 10⁻³ rad 以降に荷重を過小評価する傾向が ある。
- 鉄筋コンクリートの区間と鉄骨のみの区間の変位分 担は、著しい剛性低下以前は概ね整合していた。
- 3) ひび割れ分布は概ね類似していたが、境界プレート 近傍のひび割れが抑制傾向にある実験結果に対し、 解析結果は境界プレート近傍で最大主ひずみが増加 傾向にある。
- 4) 境界プレートをH形鋼に溶接していない試験体について、解析の最大荷重を示した部材角における、 解析の曲げモーメント分布は、鉄骨梁の埋込部分で ゆるやかな曲線形状であり、せん断力分布は、放物 線形状を示す。
- 5) 境界プレートをH形鋼に溶接している試験体について,H形鋼およびRC造部分のせん断力の最大値は,境界プレートからRC造部分へ伝達する曲げモーメントにより軽減され,埋込み長さと強い関係性が示された。

参考文献

- 金田和浩, 吉崎征二, 宮崎直志, 川端一三:RC 積 層工法による超高層骨組の構造実験(その8 材端 部RC、中央部鉄骨で構成される複合構造梁の載荷 実験), 日本建築学会大会学術講演梗概集(近畿), 構造II, 2895, pp.305-306, 1987.8
- 日本建築学会:鋼コンクリート構造接合部の応力伝 達と抵抗機構, p106, 2011.2
- 3) 佐藤良介,小澤潤治,坂井由尚:材端部鉄筋コンク リート造中央部鉄骨造で構成された埋込形式の複合 構造梁の構造性能,コンクリート工学年次論文集, Vol.34, No.2, pp.1171-1176, 2012
- 4) 中田寛二,佐藤良介,小澤潤治,古川雄太:中央部 鉄骨造の材端部鉄筋コンクリート造への埋込み始 端に鋼製プレートを有する複合構造梁の構造性能, コンクリート年次論文集, Vol.35, No.2, pp.1207-1212, 2013

- 5) 佐藤良介,小澤潤治,中田寛二:鉄骨部材と溶接さ れた鋼製プレートで鉄筋コンクリート区間を強化し た埋込み形式の複合構造梁の剛性評価手法の拡張解 釈,コンクリート工学年次論文集, Vol.36, No.2, pp.1087-1092, 2014
- 6) 佐藤良介,小澤潤治,中田寛二:鉄筋コンクリート区間と鉄骨区間の境界に鋼製プレートが配された埋込み形式の複合梁の部材剛性評価手法の適用性,コンクリート工学年次論文集, Vol.38, No.2, pp.1177-1182, 2016
- 7) 日本建築学会:鉄筋コンクリート造建物の靭性保証 型耐震設計指針・同解説,1999.8
- 8) 土木学会: 2012 年制定コンクリート標準示方書
 [設計編], 2013.3
- K.MAEKAWA,A,PIMANMAS,AND H.OKAMURA :Nonlinear Mechanics of Reinforced Concrete. ,Spon Press, London, 2003.
- 10) 飯塚崇文:普通強度から高強度までの材料を用いた 鉄筋コンクリート構成則と有限要素解析に関する研 究,千葉大学学位論文,1992年
- 福浦尚之,前川宏一:非線形支配ひび割れ面の三次 元同定と空間平均化構成則の高度化,土木学会論文 集,65(1),pp118-137,2009
- Dirk Arend Hordijk: Local approach to fatigue of concrete, Doctral Thesis, Delft University of Technology, 1991.
- 13) 島弘,周礼良,岡村甫:マッシブなコンクリート に埋め込まれた異形鉄筋の付着応力-すべり-ひず み関係,土木学会論文集,第378号/V-6,pp.165-174,1987.2
- 14) 中田寛二,小澤潤治,佐藤良介:柱梁せい比が小さい柱鉄筋コンクリート造・梁鉄骨造十字形接合部の構造性能,コンクリート工学年次論文集,Vol.40,No.2, pp.1081-1086, 2018
- 15) 鈴木英之,西原寛:材端部 RC 造中央部鉄骨造で構成される複合構造梁のせん断耐力と変形性能,日本建築学会構造系論文集,Vol.73,No.631,pp.1673-1680,2008.9