論文 テーパ型ナットを PC 鋼棒定着体としたあと施工アンカー工法の破壊 モード判定法に関する一考察

小林 薫*1・鈴木 雄大*2・平林 雅也*3・藤井 保也*4

要旨:あと施工アンカー工法の高耐力化,信頼性向上を目的に,PC 鋼棒先端にテーパ型に加工したナット取り付けたアンカー筋を使用する工法を考案した。既報告¹⁾では,PC 鋼棒 φ17, φ32 を鋼棒直径の20 倍の定着長とした引張試験によりPC 鋼棒が破断する破壊形態となった。本報告では,PC 鋼棒 φ13, φ23 で追加の引張試験を行い,既報と同様な破壊形態となることを確認した。PC 鋼棒 φ23 で母材コンクリート強度が14~16N/mm²程度の引張試験も行い,PC 鋼棒 (C種1号)の降伏強度以上の450kNを超える引張耐力となることも確認した。さらに,先端定着部の要素実験を基本に,本提案工法の破壊モード判定法を示した。 **+-ワード**:あと施工アンカー,先端定着,PC 鋼棒,破壊モード

1. はじめに

あと施工アンカー工法は、コンクリート構造物の補強 工事や付帯設備の取り付けなどで多く用いられている。 接着系あと施工アンカー工法²⁾は、母材となるコンクリ ートに削孔を行い、アンカー筋と母材コンクリートとを 充填材の硬化により物理的に固着する工法である。充填 材は、充填方式によりカプセル方式と注入方式に分けら れ、有機系と無機系が用いられる。土木構造物では、あ と施工アンカーを長期にわたって使用する場合、耐久性 の観点から無機系のセメント系材料を充填材(以下「充 填モルタル」という)に用いるのを一般化³⁾している場 合もあり、著者らが検討している工法もこれに類すもの である。

接着系あと施工アンカー工法に所定の引張耐力を発揮 させるためには、削孔面の状況、充填モルタルのドライ アウト防止など、適切な施工管理も必要となる。仮に、 施工管理状況が適切に実施されない場合、接着系あと施 エアンカー工法として、所定の引張耐力が発揮できず、 充填モルタルを含んだアンカー筋周辺全体が引抜けてし まうことも想定される。このような挙動の発生は、接着 系あと施工アンカー工法の信頼性の低下とともに、機能 を損ね事故に発展する可能性もあり、絶対避けなければ ならない事象である。

著者らは、あと施工アンカー工法の信頼性の向上とと もに高耐力化に対応可能な工法の検討を行ってきた。そ の結果、テーパ形状のナットを丸鋼形状の PC 鋼棒先端 部(あと施工アンカー筋埋め込み部の最深部位置)に取 付け、定着長を PC 鋼棒直径の 20 倍とする工法を提案¹⁾ している。既報¹⁾では、PC 鋼棒 φ 17、 φ 32 を用いた引 張試験結果を示し,破壊形態として PC 鋼棒破断となったことを報告¹⁾した。

本報告では、本提案工法で PC 鋼棒 φ13、 φ23 での追 加の引張試験を実施し、引張耐力、破壊形態の確認を行 った。母材コンクリートが 14~16N/mm²程度の低強度に、 本提案工法を適用した場合の引張試験も行い、母材コン クリート強度の影響の検討も実施した。さらに、先端定 着部の要素試験結果から、本提案工法の破壊モード判定 法の検討を行った。

2. テーパ型ナットを PC 鋼棒先端定着体としたあと施工 アンカーエ法の概要¹⁾

定着体を取付けたアンカー筋は、参考文献2)による と頭付アンカーボルトと呼ばれている。本提案工法は、 アンカー筋先端のネジ加工部にテーパ型に加工されたナ ットを取り付けて用いる。よって、本提案工法は、頭付 アンカーボルトを用いたあと施工アンカー工法の範囲に 位置づけられると考えられる。図-1 は、テーパ型ナッ トをアンカー筋先端に取り付け、あと施工アンカー筋と して用いた場合に想定される耐荷機構の略図を示したも のである。高引張耐力化を図るためアンカー筋には、PC 鋼棒の使用を前提としている。テーパ型ナットの外観を 写真-1(a)に、テーパ型ナットを PC 鋼棒先端にセット した状況を写真-1(b)に、それぞれ示す。

丸鋼形状の PC 棒鋼は,一般的に,接着系あと施工ア ンカーでの使用は認められていない²⁾。しかしながら, アンカー筋先端の定着強度が十分ならば,高強度で丸鋼 形状の PC 棒鋼をアンカー筋に用いるあと施工アンカー 工法への適用は可能と考えられる。本提案工法では,母

*1 JR 東日本コンサルタンツ(株) 鋼構造設計部 部長 博士(工学)(正会員)
*2 東日本旅客鉄道(株)東京工事事務所 工事管理室 主席 (正会員)
*3 東日本旅客鉄道(株)東京工事事務所上信越工事事務所新潟工事区 総括助役 (正会員)
*4 サンコーテクノ(株) エンジニアリング本部 部長 (正会員)

材コンクリートを削孔し, PC 鋼棒先端にテーパ型ナット を取り付けたアンカー筋を削孔内に挿入後,モルタルを 充填する。充填モルタルが固結することで,アンカー筋 に引張抵抗力が発揮される。

丸鋼形状の PC 鋼棒は、充填モルタルとの付着力が異 形鋼棒より低下すると考えられるため、アンカー筋に引 張力が作用すると、大部分がアンカー筋の先端定着部に 作用することになる。テーパ型形状の先端定着体に引張 力が作用すると、先端定着体のテーパ面から充填モルタ ルに支圧応力が作用し、母材コンクリートの孔壁部分へ も伝達される。母材コンクリート孔壁面に作用する支圧 応力は、充填モルタルと母材コンクリート孔壁面に抵抗 として摩擦力を励起させる。先端定着体周辺以外の箇所 では、充填モルタルの付着力が作用する。この両者の引 張抵抗機構から、高強度の PC 鋼棒を用いても安定した 引張耐力を発揮するあと施工アンカーとして機能できる と考えた。

3. PC 鋼棒 (φ 13, φ 23) を適用した引張耐力確認試験

本提案工法は,既報¹⁾において PC 鋼棒 φ 17, φ 32 を 用いた引張耐力試験の結果, PC 鋼棒直径の 20 倍の定着 長で破断となり, PC 鋼棒 φ 17(削孔径:34.1mm)で 270kN, φ 32(削孔径:53.8mm) で 1040kN の引張耐力を確認し た。

本提案工法において, 既報¹⁾ 以外の PC 鋼棒において も同様な破壊形態となるか追加の検討を行った。用いた PC 鋼棒は φ 13, φ 23 である。以下に概要を述べる。

(1) PC 鋼棒 φ 13, φ 23 を用いた引張耐力確認試験の概 要

引張試験は,既報¹⁾と同様に行った。図-2に,引張 耐力確認試験配置状況,試験状況の略図を示す。用いた PC 鋼棒は, φ13(削孔径:28.3mm)とφ23(削孔径: 36.0mm)で, C種1号(SBPR1080/1230)の規格のもの とした。定着長は, PC 鋼棒直径の20倍とした。テーパ 型ナットは, S45C の鋼材で製作した。

引張耐力確認試験に用いたコンクリートブロックの寸 法は、900mm×900mm×900mmとした。コンクリートブ ロックの形状寸法は、引張試験時の載荷治具の反力が、 テーパ型先端定着体からコンクリートへ伝達される応力 範囲内に入らないように定めた。なお、テーパ型先端定 着体からコンクリートに伝達される応力範囲は、テーパ 型先端定着体から45度のラインの領域を仮定した。

試験体の製作は、コンクリートブロックにコアマシン で所定の削孔を行った。次に、孔壁面に水を塗布し、テ ーパ型先端定着体をセットしたアンカー筋を孔内に設置 し、充填モルタルを打設した。なお、コンクリートブロ ック体には、吊り金具を取り付けた面にのみ D13(SD345)

図-1 テーパ型ナットを先端定着体としたあと施工 アンカーエ法の耐荷機構の略図¹⁾

(a) 外観
 (b) テーパ型ナットセット状況
 写真-1 テーパ型ナット付 PC 鋼棒アンカー筋¹⁾

を格子状に配置しているだけで,テーパ型先端定着体か らコンクリートブロック端部までの領域は無筋となって いる。充填モルタルについては,市販のプレミックスタ イプのものを使用した。

載荷は、500kN 用のセンターホール型の油圧ジャッキ を手動の油圧ポンプを用いて加圧して、アンカー筋に引 張荷重を作用させ、破壊状況を確認するまで載荷を行っ た。計測は、引張荷重とフーチング上面付近での変位で ある。母材コンクリート強度が 14~16N/mm²程度の低強 度に対しても引張試験を行った。これは、比較的古い無 筋コンクリート構造物への適用を視野に入れたためであ る。

(2) 本提案工法での引張耐力確認試験結果

表-1 に,破壊荷重,破壊モードを示す。図-3(a)に, 既報¹⁾を含めて, PC 鋼棒φ13,φ17,φ23,φ32 をア ンカー筋に使用した場合を,図-3(b) に低強度コンクリ ートの荷重変位関係をそれぞれ示す。用いている PC 鋼

表-1	実験結果	(破壊荷重,	破壊モー	ド)

試験体名	使用アンカー筋鋼材 の規格	コンクリートブ ロック圧縮強度 f'ck (N/mm ²)	充填モルタル圧 縮強度 f'ck (N/mm ²)	最大荷重 Pmax (KN)	破壊モード
ф13		31.4	62.5	161.0	PC鋼棒破断
φ17	C種1号 (SBPR1080/1230)	38.1	62.5	270.0	PC鋼棒破断
ф 23		31.3	67.6	539.8	PC鋼棒破断
ф 32		32.4	69.4	1040.0	PC鋼棒破断
低強度 ϕ 23-1		16.9	61.8	439.6	(PC鋼棒降伏)
低強度 ϕ 23-2		14.5	53.0	500.0	(PC鋼棒降伏)

棒の規格はすべてC種1号(SBPR1080/1230)である。

引張耐力確認試験結果(図-3(a))からは、実験を行ったPC鋼棒の各ケースで破断する破壊形態を確認した。 なお、低強度コンクリートの場合は、PC鋼棒の降伏強度 を確認し、破断とならない時点で載荷を中止した。圧縮 強度が14.5N/mm²の試験体では、500kNまで引張荷重を 載荷した。写真-2に、PC鋼棒 φ 32の破断状況¹⁾を示 す。写真-3に、PC鋼棒 φ 32試験体の実験終了後のコン クリートブロック表面の状況を示す。コンクリート表面 は無損傷であった。これは、他の試験体にも共通した状 況で、PC鋼棒が丸鋼形状であるため充填グラウトとの付 着強度が小さいため、充填モルタル、母材コンクリート にひび割れや剥離を発生させるレベルの引張応力が伝達 されなかったためと考えられる。

PC 鋼棒 φ 32 を用いた試験体の実験終了後, φ 100 ビットを用いてコア削孔を行いテーパ型ナット部周辺の状況確認を行った。採取したコンクリートコアのテーパ型 ナット周辺の状況を**写真-4**¹⁾に示す。採取したコア表 面を観察すると、テーパ型ナットの最小径部付近から円 周状のクラックが見られる。円周状のクラックに直交す

写真-2 PC 鋼棒 φ 32 アンカー筋の破断状況¹⁾

写真-3 PC 鋼棒 φ 32 アンカー筋引張試験後のコ ンクリートブロック表面の状況

写真-4 PC 鋼棒 φ 32 アンカー筋コアのテーパ型先 端定着体付近の状況¹⁾

写真-5 PC 鋼棒 \$ 32 アンカー筋コアの断面の状況

るように、アンカー筋軸方向にも長さ 100mm 程度のク ッラクが2本、長さ 50mm 程度のものが3本発生してい た。写真-5 は、採取したコンクリートコアにカッター を入れて半割し、その断面を撮影したものである。円周 状のクラックは、テーパ型先端定着部の最小直径位置付 近から発生していた。円周状のクラックに関しては、参 考文献 2)の頭付アンカーボルトを用いた型抜きアンカ ーの破壊例にも示されているが、本検討工法では、コン クリート孔壁と充填モルタルとの付着強度が確保されて いたことから、充填モルタル接合面の付着破壊とはなら

試験体	テーパ形状			試験	コンクリートブ ロック		充填刊外	穿孔径	定着長	最大 荷重			
No	lo 底部径 D(mm)	先端部径 d(mm)	高さ H(mm)	角度 θ(度)	項目	寸法 (mm)	強度 (N/mm²)	強度 (N/mm²)	φ(mm)	(mm)	Pmax (kN)	頒考	
H/D=1.0			26	6.59			35.5	73.3			178.6		
H/D=1.5	5 0 26 0 0	20	39	4.40	· 押込 · 試験	□600 35.1 73.3			193.1				
H/D=2.0			52	3.30		神及	× 650	35.9	73.3	38	100	236.6	
H/D=3.0			78	2.20		× 350	42.8	65.6			487.1	載荷冶具変形	
H/D=4.0			104	1.65			41.3	65.6			477.3	載荷冶具変形	

表-2 先端定着体要素試験の諸元表・実験結果

なかった。

以上の実験結果から, PC 鋼棒先端にテーパ型ナットを 取り付けたアンカー筋を適用したあと施工アンカー工法 は、母材コンクリートの孔壁面の水塗布処理を前提とす るが PC 鋼棒の直径の 20 倍を定着長とすることで, PC 鋼棒が破断する破壊形態となることを確認した。また, テーパ型先端定着体周辺位置で,アンカー筋を中心軸に 円周状のクラック,円周状のクラックと直交し,母材コ ンクリートに発生していることを把握した。

次章では、このような損傷状況を踏まえ、本提案工法 の想定される破壊モードとその判定法の検討を行う。

4. 提案工法の破壊モード判定法の検討

本提案工法を実務で適用するためには、本工法の破壊 形態(破壊モード)を明確にし、不安定な、あるいは不 確定な破壊形態となるような実施構造を避けなければな らない。ここでは、本提案工法において、想定される破 壊モードを示し、その判定方法の検討を行った。

4.1 想定破壊モードの設定

本提案工法では、これまでの引張試験結果から、テー パ型先端定着体周辺の充填モルタル、母材コンクリート に発生したクラック状況(損傷状況)を踏まえ、以下に 示す3つの破壊モードが存在すると想定した。

【想定破壊モード】

- (1) 充填モルタルと母材コンクリートの界面で全体が抜け出る接合面破壊²⁾に伴う耐荷性能喪失(接合面破壊モード)
- (2) テーパ型定着体周辺の充填モルタル,あるいは母材 コンクリートの局所破壊に伴う耐荷性能の喪失(テ ーパ型先端定着体周辺の破壊モード)
- (3) アンカー筋の破断に伴う耐荷性能喪失(アンカー筋 破壊モード)

4.2 想定破壊モード判定法の検討

4.2.1 接合面破壊モードに対する判定方法

著者らによる検討¹⁾において、コンクリート孔壁と充 填モルタルとの付着強度確認試験から、コア削孔で孔壁 を成形し、孔壁を水塗布処理した場合、付着強度は概ね 10N/mm²となる。この値から、本提案工法の必要定着長

写真-6 先端定着体要素試験体の例 (H/D=1~3)

が算定できる。必要定着長以上の定着長とすることで, 接合面破壊モードを防止することが可能である。特別の 検討をしない場合,定着長をアンカー筋直径の20倍で, PC鋼棒(SBPR1080/1230C種1号)でも破断となり,接 合面破壊を防止できる。

4.2.2 テーパ型先端定着体周辺の破壊モードに対す る判定方法構築の検討

テーパ型先端定着体周辺には、円周状のクラックや円 周状に直交するクラックが発生する。このような損傷の 発生が、本提案工法の耐荷特性に影響を与える可能性が ある。テーパ型先端定着体周辺での耐荷性状を確認する ため、先端定着体周辺領域を模擬した要素試験を実施し た。先端定着体周辺の想定破壊モードに応じた定着性能 評価法の検討を行うことにした。

(1)要素試験体概要

表-2に、試験体諸元、実験結果を示す。図-4に、先端定着部の要素試験体形状、および実験状況を略図で示す。実験に用いた先端定着体の要素試験体は、丸鋼の端部がテーパ型形状をしており、丸鋼部の直径が20mmとし、テーパ形状最外縁部の直径(D)が26mmで、テーパ部

の区間長(H)をテーパ形状最外縁部の直径(D)の 1.0~ 4.0倍に変化させることで,テーパ部の角度(θ)を 1.7 ~6.6度まで変化させた。

試験体は、600mm×600mm×350mmのコンクリートブ ロック中央にφ38の削孔を行い、写真-6の先端定着体 の要素試験体をセットし、グラウトの充填区間は100mm とした。グラウトの充填区間を100mmとした理由は、先 端定着体要素試験体の丸鋼直径が20mmであり、その5 倍を目安とした。これは、先端定着体への作用力が、テ ーパ面から充填グラウトに支圧応力として伝達する際、 ある分布幅が想定されるが、正確に支圧応力の分布幅を 推定するのが困難であるため、今回は仮定として丸鋼直 径の5倍の区間を先端定着部として試験体を製作した。

(2) 試験概要

丸鋼形状の鋼材は充填モルタルとの付着強度が弱いの で、アンカー筋への作用力は先端定着部に集中すると想 定されるため、本載荷実験でもこれを再現することにし た。コンクリートブロックにセットされた先端定着体の 要素試験体背面に載荷治具を取り付け、載荷治具からテ ーパ型先端定着体を充填モルタル側へ押し込む方向に直 接作用力を与えた。なお、実験に用いた試験装置は 2000kNの万能試験機である。

(3) 試験結果および考察

図-5(a),(b)に,H/D=1.0 と 2.0 の実験結果として, 荷重変位曲線を示す。荷重変位関係の特徴として,テー パ型定着部の鉛直変位が若干増加すると載荷荷重が低下 するが,すぐに回復し,また鉛直変位が増加すると荷重 が低下,回復を繰り返し,載荷荷重が増加する挙動を示 す。テーパ型定着部の鉛直変位の増加は,充填モルタル 内への微小な貫入が発生しているものと想定され,他の 試験体も同様な挙動を示した。H/D=3.0 と 4.0 の試験体 は,載荷荷重が480kN程度時に載荷治具が座屈したため, 終局強度を確認できなかった。

(4) テーパ型先端定着体近傍の破壊モードに伴う引張 耐力評価法構築の検討

図-6 に、先端定着体から作用する支圧応力度の検討 位置の概要を示す。先端定着体周辺破壊は、先端定着体 からの支圧応力が作用する充填モルタル面、あるいは母 材コンクリート面に発生すると仮定した。先端定着体周 辺破壊は、支圧応力によって発生する割裂ひび割れが原 因として、耐荷性能が低下するものと想定した。なお、 母材コンクリートの支圧応力度は、作用最大荷重を先端 定着体領域(アンカー筋直径の5倍の範囲)に削孔周長 を乗じた支圧作用面積で除して求めた。

先端定着体の要素試験結果をテーパ部の角度(θ)と テーパ型先端定着体の支圧応力度と充填モルタルの引張 強度との比,あるいは母材コンクリートへの作用支圧応

図-6 先端定着部の支圧応力度の検討位置

力度と母材コンクリート引張強度との比でそれぞれ整理 した。充填モルタル、母材コンクリートの引張強度は、 参考文献4)に記載されている引張強度の算定式を用いた。 支圧応力度と引張強度との比は、割裂ひび割れ発生の度 合いを表すための指標とした。

図-7は、テーパ角度(*θ*)と充填モルタルへの作用 支圧応力度(Pmax/Amor)と引張強度(σtk)との比 ((Pmax/Amor) / σtk) を表したものである。同様に、図 -8 は、テーパ角度(θ)と母材コンクリートへの作用 支圧応力度(Pmax/Acon)と引張強度(ftk)との比 ((Pmax/A) /ftk) を表したものである。図-7,8中の近 似曲線は,指数関数で近似式を求めた結果を示している。 求めた近似式を式(1)、式(2)に示す。なお、近似式の作成 には、載荷治具が変形した H/D=3.4 の実験結果を用いて いない。また、図-7、8には、本提案工法で引張試験を 行い, PC 鋼棒が破断した場合,低強度コンクリートでの 引張試験結果も参考としてプロットした。PC 鋼棒が破断 した引張試験結果は、引張荷重のほとんどが先端定着部 に載荷されることになる。この結果と近似式を比較する と,近似式が下回っており,先端定着部の引張強度を安 全側に評価できると思われる。

以上の検討結果から、テーパ型先端定着体周辺破壊に 伴う破壊モードは、式(1)と式(2)から求まる値の小さい値 (式(3))から先端定着部の強度を推定し、他の破壊モー ドの強度より一番小さな値を示した場合に発生すると判 定してよいと考えられる。

・充填モルタル	
$Pmax1 = 9.890e^{0.1314\theta} \cdot \sigma tk \cdot Amor$	(1)

・母材コンクリート $Pmax2 = 9.935e^{-0.081\theta} \cdot ftk \cdot Acon$ (2)

 $Pmax = min(\vec{x}(1), \vec{x}(2))$ (3)

ただし, $\theta = 1.7 \sim 6.6$ 度, σ ck=66~73N/mm², fck=35~42N/mm²

ここに,

Pmax:先端定着部強度(kN)

Amor:支圧応力が作用する充填モルタルの面積(mm²)
 Acon:支圧応力が作用する母材コンクリートの面積(mm²)
 σ tk:充填モルタルの引張強度(=0.23 σ ck²³) (N/mm²)⁴⁾
 ftk:母材コンクリートの引張強度(=0.23 f ck^{2/3}) (N/mm²)⁴⁾
 σ ck:充填モルタルの圧縮強度(N/mm²)
 fck:母材コンクリートの圧縮強度(N/mm²)
 θ:先端定着体テーパ角度(度)

4.2.3 アンカー筋破断に伴う破壊モードの判定法の 検討

アンカー筋破断の破壊モードは,アンカー筋の引張強 度(破断強度)より,充填モルタルと母材コンクリート 接合面の付着強度が大きく,かつ,先端定着部強度が大 きい場合に,アンカー筋が破断する破壊モードとなる。 アンカー筋の破壊モードは,アンカー筋の強度を設計で 十分活用できること,安定した破壊形態であることから, 本提案工法ではアンカー筋破壊となるように設計を行う ことが望ましいと考える。

5. まとめ

テーパ型に加工したナットをPC鋼棒先端に取付けて, アンカー筋としたあと施工アンカー工法の破壊モードに 対する検討を行った。検討結果のまとめを以下に示す。

- 本提案工法において、PC 鋼棒 φ 13, φ 17, φ 23, φ
 32 を用いた引張試験を実施した。定着長を PC 鋼棒
 直径の 20 倍とすることで PC 鋼棒が破断となる破壊
 モードとなった。
- (2) 本提案工法における引張試験結果,引張試験結果後 テーパ型先端定着体を含む周辺のコア抜きからコン クリートを採取し,観察した結果を踏まえ,3つの 破壊モードを仮定し,それぞれの判定法を示した。 以下に概要をまとめる。

a) 接合面破壊モードに関しては,母材コンクリート削孔 後,水を塗布する処理をする前提で付着強度を10N/mm² として定着長を算定してよい。特別な検討を行わない場

合, PC 鋼棒直径の 20 倍の定着長とすることで, PC 鋼棒 破断となる破壊モードとなる。

b) テーパ型定着体周辺の破壊モードは、テーパ角度を変 えた要素試験から求めた式(3)から先端定着強度を定め、 他の破壊モードの強度より小さい場合に発生するとして よい。

c) アンカー筋の破壊モードに関しては, 接合面強度, 先端定着部強度がアンカー筋の引張強度を上回っていれば, PC 鋼棒破断となる安定した破壊モードとすることができる。

参考文献

- 小林 薫,鈴木雄大,平林 雅也,伊藤 隼人:テーパ型 ナットをPC 鋼棒定着体としたあと施工アンカー工 法に関する検討,コンクリート工学年次論文集, Vol.38,No.2, 2016.7
- 日本建築学会:各種合成構造設計指針・同解説, 2010.11
- 東日本旅客鉄道株式会社:あと施工アンカー設計マ ニュアル,2004年12月
- 4) 鉄道総合技術研究所編:鉄道構造物等設計標準・同 開設(コンクリート構造物),丸善,2004.4