種別 論文
主題 A study on parameters influencing maximum width of early-age thermal cracks in RC abutments using neural networks
副題
筆頭著者 Mehboob Rasul(Yokohama National University)
連名者1 細田暁(横浜国立大学)
連名者2 前川宏一(横浜国立大学)
連名者3
連名者4
連名者5
キーワード actual construction data、neural networks、RC abutments、RC橋台、thermal cracking、ニューラルネットワーク、実構造物のデータ、温度ひび割れ
42
1
先頭ページ 1127
末尾ページ 1132
年度 2020
要旨 This paper presents a study on the parameters influencing the maximum width of early-age thermal cracks in massive RC abutments using neural networks. The parametric studies are based on a well-trained neural network which was trained using Yamaguchi prefecture dataset. The effect of unit cement content, width, thickness, lift height, reinforcement ratio, lift interval, ambient temperature and initial concrete temperature was studied. The results have shown the potential of neural networks to extract the essences of construction data and proposing recommendations to mitigate harmful thermal cracks.
PDFファイル名 042-01-1187.pdf


検索結果へ戻る】 【検索画面へ戻る