種別 論文
主題 実構造物のデータを用いたRC橋台の温度ひび割れ幅を予測するニューラルネットワークモデルの改善
副題
筆頭著者 細田暁(横浜国立大学)
連名者1 Adnan AKMAL(横浜国立大学)
連名者2 MUHAMMAD SALEEM(Imam Abdulrahman Bin Faisal University)
連名者3 YUTO YOSHIDA(横浜国立大学)
連名者4
連名者5
キーワード abutment wall、Artificial Neural Network、construction data、expansive additive、maximum crack width、thermal cracking index、ニューラルネットワーク、ひび割れ指数、施工データ、最大ひび割れ幅、橋台たて壁、膨張材
44
1
先頭ページ 970
末尾ページ 975
年度 2022
要旨 This study was intended to improve the prediction accuracy for the Artificial Neural Network (ANN) model presented in the recent past research to predict the maximum thermal crack width in RC abutment walls. FEM thermal stress analysis was used to filter the potentially high and low-risk zero-cracking lifts based on thermal cracking index. Several new input variables for ANN were added to the past model, and sophisticated input data set was used. The revised ANN model was utilized to simulate thermal cracking response to three different material countermeasures, such as use of expansive additive, glass fiber sheet reinforcement, and type of cement,.
PDFファイル名 044-01-1156.pdf


検索結果へ戻る】 【検索画面へ戻る