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[2145] FAILURE CRITERIA AND NONLINEAR DYNAMIC ANALYSIS
OF CONCRETE SLABS UNDER IMPULSIVE LOADS
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1. INTRODUCTION

Understanding the wultimate behaviors of concrete structures under
impulsive loads can be considered as a first step forward towards designing
impact resistible structures. In this study, an analytical method based on the
layered finite element procedure with provision for material nonlinearity,
elasto-plasticity, cracking in concrete elements and the loading and unloading
phenomena is proposed for studying the ultimate behaviors and failure
mechanisms of concrete slabs under impulsive loads. A triaxial failure
criterion is also applied in the analysis to consider the various failure
modes associated with impulsive loadings. Verification of the analytical
procedure is carried out through comparisons with experimental results.

2. FAILURE CRITERION
2.1 FAILURE CRITERION BASED ON OTTOSEN’S MODEL
The failure criterion applied here is the triaxial failure criterion for

plain concrete which was proposed by Ottosen [1]. The failure surface for
Ottosen’s Model (four-parameter model) can be expressed as,

f(p,on,0) = p - pr(on,8) =0, |8] = 60 swse(1)
where, p=¥2J2 :stress component perpendicular to the hydrostatic axis. ----(2)
pr(on, 0)= —%E[-/E-A+/2‘Az-8a(36°am-1)]: failure envelope on deviatoric planes.
eoen 3
ga = I1/3 : octahedral mean stress. ) ""543
It, J2, @ : stress invariants.
kr+cos[ % cos™!(kz-cos(36))] ;for cos(868)=0
A= ....(5)
k1-cosl g = % cos1(-k2-cos(30))] ;for cos(88)<0

In the above equations, @, b, k: and k2 are constants calibrated from
biaxial and triaxial test results reported in the literature. In this study,
ft (= fe/fe’) = 0.12 is selected for the analytical procedure and the
corresponding values for the four parameters are a=0.9218, ©=2.5969,
k1=9.9110, k2=0.9647.
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where, fo’ : uniaxial compressive strength of concrete
f¢ . uniaxial tensile strength of concrete
The Ottosen model is known to have both a parabolic Tooct~6oct relation
and also @§-dependance. It is also capable of reproducing all the main features
of the triaxial failure surface.

2.2 YIELD CRITERION

The yield criterion for concrete is usually assumed on the basis of the
known failure criterion. In earlier plasticity models, the yield surface is
assumed to be a proportionally reduced shape of the failure surface as shown
in Fig.1(a). It is found that this assumption is inadequate for concrete
materials. It is assumed here that no plastic zone exists in the pure
tensional region of concrete.

A nonuniform hardening plasticity model proposed by Han and Chen [2] is
applied here. A schematic representation of the model employed is shown in
Fig.1(b). During hardening, the loading surface expands and changes its shape
gradually from the initial yielding surface to the failure surface.

A plastic potential other than the loading function (nonassociated flow
rule) is applied here in view of the fact that inelastic volume contraction at
the beginning of yielding and volume dilatation at the ultimate stages are
known to occur in concrete. The Drucker-Prager type of potential is used here.

2.3 CRITERIA OF LOADING AND UNLOADING

The loading and unloading criteria in stress space can be expressed as,
af

f =0 and Py «dgi; > 0 3 loading ; dof s #0 <ee-(B)
f=0and 52— do;; = 05 neutral loading ; do?, =0 o b 57
£ =0 and 93{’! -do;; < 0 % unloading ; 4%, =0 + v+ ()

The stress space is assumed to be based on Drucker’s stability postulate.
Under loading, the stress condition is such that the stress state moves
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Fig.1 Yield and failure surfaces
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outward from one loading surface to another new surface, while under neutral
loading the stress point moves along a particular loading surface. The stress
state is assumed to move inwards according to the former loading condition to
a previous loading surface during unloading. Only the elastic strain
components will decrease during unloading.

3. ANALYTICAL PROCEDURE

A 2-dimensional step-by-step finite element method is developed for
analysis of reinforced concrete slabs subjected to dynamic impulsive loads.
The Newmark-g method is employed to solve the equations of motion during
discrete time intervals [3].

3.1 LAYERED FINITE ELEMENT METHOD

Reinforced concrete slabs with doubly reinforced sections are modeled
using the layered finite element procedure as shown in Fig.2. The slab is
divided into 8 hypothetical layers, 6 of concrete and 2 of reinforcement. The
layering approach allows the strains and stresses to be varied with member
thickness and permits the inclusion of steel reinforcement at proper levels
within the slab.

The finite element employed here is the 4-node rectangular element. Each
element nodal-point has 5 degrees of freedom, i.e., inplane displacements
(u,v), transverse displacement (w) and sectional rotations around the x and y
axes (@x,8,). The element is considered to consist of the inplane, plate
bending and coupling effects. It is considered here that the extensional-
bending coupling effect becomes more pronounced due to the shifting of the
neutral axis as cracks progress through the concrete slab.

The total strains for each layer is considered to be made up from the
inplane element strains {es} and the plate bending related strains {e}. The
inplane element strains are constant throughout the thickness of the slab but
the strains caused by plate bending varies as the layer separates from the
middle surface (reference surface). The total strains for each layer can be
expressed as,
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Fig.2 Layered finite element meshes
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{er} = {ea} + 2-{e} *342(8)

where z is the distance from the reference surface.

The neutral axis is assumed to act at the center of the elastic portion
of the slab, expressed by the following equations,

(1/2)Ec't2 t+ Es Zdsxi*Zsxi ey = (1/2)Eo’t2 + E.,'EAsw 'Zsyr' ...(10)
Eoot + Es'zﬂsxi ! # Eo-t + Es’zAsyi

where, ex, ¢y : the neutral axes in the x and y directions, respectively.
Ec, Es . concrete and reinforcement moduli of elasticity, respectively.
dsxi, dsyi: average cross-section per unit length in the x, ¥ directions
for the i th layer of reinforcement, respectively.
Zsxi, Zsyi. distance from the middle of i th layer to the top surface
of slab in the x, y directions, respectively.
t: slab thickness.

The total stiffness matrix for the composite element is obtained by
integrating the stiffness matrix for each layer and summing up for the total
stiffness. The effects of transverse shear stresses in moderately thick plates
are considered to affect the ultimate behaviors of concrete slabs such as the
crack distribution. The transverse shear stresses for each element are
calculated from the equations of equilibrium at each time interval which can
be expressed by,

ex =

a0« ATxy ATxz - a0y ATxy ATy - .
ax Yy Y g, y ! X ! z 0 an

The transverse shear stresses can be obtained by direct integration of
the equations of equilibrium [4],

- [ o | 87x ). __J[H_Q ATxy |,
Txz J. 2% + 3y dg Toz = 2y + 3% dz (12)

3.2 VERIFICATION OF ANALYTICAL PROCEDURE

Results of experimental tests carried out on reinforced concrete slabs
are used to verify the validity of the calculations. Details of the testing
procedure can be found in [5]. The types of concrete slabs tested are the
normal stremgth reinforced concrete (RC) slabs and high strength reinforced
concrete (HRC) slabs. The impulsive load function measured during experiments
are digitalized and applied into the analysis. Material test results such as
Young’s modulus, Poisson’s ratio, uniaxial material characteristics from
uniaxial compressive (concrete) and tensile (reinforcement) tests are used as
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Fig.3 Impulsive load - midspan deflection function
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the input data for the various materials. It should be noted here that the
uniaxial material test results are converted into the triaxial effective
stress-effective strain relation before application into the calculations [4].

Figs.3(a) and (b) show the impulsive load versus midspan deflection
curves for the calculations and experiments of RC and HRC slabs, respectively.
Fig.3.(a) shows that the calculations give a very good approximation of the
ultimate behaviors of RC slabs especially until the point of maximum impulsive
load. The difference between the calculated values and the experiment begin to
appear after the maximum impulsive load, i.e., when the unloading process
begins. The result for the HRC slab is shown in Fig.3(b). A difference in the
curves can be noticed after cracking in the HRC slab. The calculation predicts
a larger amount of deflection but on the overall, the response is similar to
the experimental result. Some vibrational effects at the final part of the
curve are predicted in the calculations due to self-excitation of the slab
after unloading. The reason can be attributed to the fact that the Ottosen
failure model might not be suitable for high strength concrete.

4. ANALYSIS OF RC SLABS UNDER IMPULSIVE LOADS

The effects of loading rates on RC slabs is studied analytically here.
The term loading rate is taken as the average gradient of a single-wave
impulsive load-time function. The calculations are carried out until failure
occurring in the slabs. Failure is defined here as the point at which concrete
crushing occurs, or at the point where deflection decreases even with an
increase in the impulsive load.

The distribution of deflection for two types of loading rates are shown
in Fig.4. The bold lines show the deflection at failure while the broken lines
are those at a stage before failure. Fig.4(a) shows the results of a slow
loading rate. The failure mode in this case can be considered to be the
flexural failure type. Deflection is spread at an equal ratio through the slab
in the transverse and longitudinal directions. It can be considered that the
total energy from the impulsive load is spread through the entire structure
and total structural failure is expected. Fig.4(b) shows the deflection curves
in the transverse and longitudinal directions for a high loading rate. The
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curves can be classified as those of
punching shear failure. Unlike bending
failure, local failure at midspan occurs
here and it can also be noticed that the
amount of deflection is much smaller
here. Almost no deflection is noticed at
the ends near the supports of the slab.

Fig.5 shows the impulsive load-
deflection curves up to failure
calculated for various loading rates.
The shape of the curves from zero to
ultimate impulsive load can be
classified into those of bending failure
and shear failure. The shear failure
type has a larger gradient with small
deflection and also a high impulsive
load at failure. On the other hand, the
curve for flexural failure has a smaller
gradient which decreases gradually. The
deflection at failure is larger but the
failure load is smaller when compared to
those of the shear type failure. From
all the curves, a failure envelope for
concrete slabs under impulsive loads can
be assumed as shown by the dotted lines
in Fig.5.

Impulsive Load (tf)

Deflection (mm)

Fig.5 Impulsive load - midspan

deflection function (Analysis)
5. CONCLUSIONS

The main conclusions from this study can be summed up as:

(1) The layered finite element method together with the Ottosen failure
model and the Drucker-Prager plastic potential is capable of giving very good
predictions of the ultimate behaviors for RC slabs under impulsive loads. The
failure mechanisms predicted agree very well with the experimental results.

(2) The failure modes for RC slabs under soft impulsive loads, i.e., bending
failure and punching shear failure, can be predicted based on the following
analytical results: deflections in the transverse and longitudinal directions,
and the impulsive load-deflection curves from zero to ultimate impulsive load.
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