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[1200] Size Effect for the Reinforcing Fibers of FRP Rods
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1. INTRODUCTION

FRP rods suffer some problems concerning the appropriate anchorage and the failure pattern.
This affects their potential for practical application. The evaluation of rods optimum (theoreti-
cal) strength is, then, important from two points of view. First, it gives estimation to strength
reduction due to improper anchorage. Second, it helps provide better understanding to the fail-
ure mechanism, through the comparison of the proposed theoretical mechanism (in calculation)
and the experimental one.

Recently, Monte Carlo simulation was applied for the evaluation of the optimum strength of
the FRP rods [1]. The fibers inside the rod section are given strengths at random, according to
appropriate distribution, and the damage propagation across the section is studied till failure.
For this purpose, a fibers strength distribution should be used. The existence of the matrix
in the composite helps transfer the load of the broken fibers to the surrounding ones, across a
certain transfer length, and back to the original fibers. Hence, the damaged fiber will be inef-
fective only along the transfer length where the damage accumulation takes place. Therefore,
the relevant strength distribution for evaluating the composite is that obtained for the transfer
length.

The standard testing methods for the fibers specifies a certain gage length which is usually
much bigger than the transfer length. As the size and length of the fibers affect their strength,
a certain size effect rule should be employed for the extrapolation of the strength distribution
from the standard one. A commonly used rule is that of Weibull distribution, based on the
weakest link concept. This rule, however, was subjected to some criticism in case of the glass
optical fibers[2]. Therefore, in this research, the reliability of the rule is investigated for three
kinds of fibers commonly used in practice for unidirectional reinforcement of FRP rods.

2. WEAKEST LINK CONCEPT
This concept was introduced by Weibull [3] in 1951, and considers the member composed
of group of links connected in series. The links follow the same strength distribution and the

probability of member survival is the probability of survival for all the links together. That is

1-F=(1-FR)" (1)
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Where F = Cumulative probability function for member (fiber) strength.
F; = Cumulative probability distribution for links strength.
n = Number of links in the member (fiber).

Weibull assumed the function F; in the following form (simplified to the two-parameter form)

i
£ =(Zym (2)
To
Where 1 = link strength.
T, = scaling factor stands for the maximum possible material strength.
m = Weibull modulus which is a material constant.

Substituting eq.2 in eq.1, and for large number of links n, one gets
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Where o = n_Tlxo
Since the number of links in the fiber is proportional to its length (1), Weibull’s rule implies
that, for different /; and Iy,
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(4)

In this way, the distribution parameters can be determined at any length given their values at
a specified length.

In order to determine the parameters of Weibull distribution for a given set of data, there exist
several methods [4,5]. Herein, two of these methods are shown and are employed for the data
obtained in this research. First method is the graphical method. Taking the logarithms of both
sides in eq.3 and rearranging, one gets the following equation

In(—1In(1 - F)) = mIn(z) — mIn(a) (5)
Which is in the form

Y=mX+B (6)

This means that the plot of In(—(In(1 — F)) versus In(z) is a straight line and the slope of
which is m. This implies, also, that the data collected at different lengths shows parallel lines.
Parameter o can be determined by searching for the point (z;) at which In(—In(1 — F)) = 0,
then from eq.5 o = z;.

The second method makes use of the distribution moments. The first moment, mean value, can
be expressed as

T=ol(1+ l) (7)
m
and the standard deviation is
o = a[l(1+ 2) - (0(1 + 2P} (®)
m m
Hence, the coefficient of variation can be expressed as

[T(1+2)—(D(1+ 1)Y=
(144

C.OV.=

8| Q
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The shape of the distribution, as determined by the C.O.V. is a function of the parameter m
only. That is why it is frequently referred to as the shape parameter, instead of Weibull mod-
ulus. Hence, for a set of data, C.0O.V. can be calculated and m is obtained from eq.9. Then,
substitution in any of eq.7 or eq.8 gives the parameter c.

3. EXPERIMENTAL WORK

In the experimental program, three kinds of fibers were tested in axial tension, namely: aramid,
carbon and glass fibers. Three lengths were specified for testing: 25 (standard), 12 and 6 mm.
The effect of strain rate on the distribution shape was investigated by applying two strain rates
to the fibers. The same strain rate was adjusted for different lengths by changing the machine
crosshead speed. Tested lengths and the corresponding crosshead speeds and strain rates are
shown in Table 1. The testing machine was Autograph with load capacity of 5000 grams. It
monitors both stroke and load level on LCD screens and prints their final values by a built-in
printer within +1% error.

A total of about 3000 fibers were tested: 100 fibers of 25 mm length per strain rate per ma-
terial and 200 fibers per strain rate per material for other lengths. Each fiber were mounted
in a standard rectangular (20mm x 45mm) carton frame with an opening in the center across
which the tested fiber is mounted. The experiments were conducted in an average temperature
of 20°C.

Fibers diameters were determined in a previous study [6] using the scanning electron mi-
croscope. The reliability of the experiments were confirmed through plotting the correlations
between the strength and both Young’s modulus and maximum strain. Fig.1 shows sample of
these plots; where a linear correlation between strength and maximum strain, and absence of
correlation between strength and modulus can be observed.
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Fig.1 Tensile Parameters Correlations

(Carbon Fibers, Length : 25 mm, Loading rate : 0.08/min.)

4. RESULTS AND DISCUSSION

The tested fibers statistical parameters are given in Table 2 for the two strain rates (0.083 ,
0.167/min). Tt is obvious from the values of the C.0.V. that Weibull modulus can be considered
as a material constant.

Further confirmation of the constancy of Weibull modulus for a certain material is made by
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Fig.2 Tensile Strength Distributions for Different fibers lengths (in the form of eq.5)

Table 2 Statistical Parameters of Fibers Tensile Strength

Material | Length Mean Standard Deviation C.0.V. Predicted Mean
(mm) (kg/mm?) (kg/mm?) (kg/mm?)

0.083* | 0.167* | 0.083* 0.167* 0.083* | 0.167* | 0.083* | 0.167*
6 416 411 32 33 0.078 0.081 429 458
Aramid 12 402 414 36 40 0.089 0.096 409 435
25 390 413 32 36 0.082 0.088 390 413
6 388 392 74 61 0.190 0.157 389 386
Carbon 12 357 347 58 63 0.162 0.183 351 347
25 317 311 55 56 0.173 0.179 317 311
6 322 352 75 74 0.234 0.210 359 359
Glass 12 295 309 66 68 0.224 0.220 312 309
25 271 266 61 63 0.225 0.240 271 266

* Strain rate (1/min.)
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plotting the results in forms of X and Y of eq.5. The plots, shown in Fig. 2, show essentially
parallel lines. The parameters of Weibull distribution were calculated using the aforementioned
methods and the results are shown in Table 3. It is obvious that m can be considered a material
constant.

In actual practice, the distribution is obtained for the test results of the standard length (25
mm) and those for shorter fibers are predicted from it. Hence, the parameters of the distributions
at 25 mm long fibers, the average in Table 3, were used for predicting other distributions, and
the results were tested for goodness of fit. The test conducted herein, to evaluate the goodness
of fit, is the K-S (Kolomogrov-Smirnov) test that calculates the maximum absolute difference
between the proposed and actual cumulative distributions. Then compares it with a standard
value dependent on the degree of significance (5% is the common practice) and the number of
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Fig.3 Actual Data and Predictions according to Weibull’s Weakest Link Concept.

Table 3 Weibull Distribution Parameters for Different Fibers

Mterial | Strain Rate | Length | Method of Moments | Graphical Method Average
(/min) (mm) m a~ T m o ! m a T
6 16.00 0.00232 15.05 0.00233 15.53 | 0.00233
0.083 12 13.50 0.00239 13.46 0.00242 13.48 | 0.00241
Aramid 25 15.00 0.00247 14.20 0.00252 14.60 | 0.00250
6 15.00 0.00235 14.53 0.00236 14.76 | 0.00235
0.167 12 12.60 0.00232 12.37 0.00235 12.49 | 0.00234
25 13.60 0.00233 13.26 0.00233 13.43 | 0.00233
6 6.00 0.00240 5.97 0.00244 6.07 | 0.00242
0.083 12 7.10 0.00262 7.03 0.00263 7.06 | 0.00263
Carbon 25 6.84 0.00294 6.67 0.00292 6.76 | 0.00293
6 7.50 0.00239 7.17 0.00238 7.34 | 0.00239
0.167 12 6.44 0.00268 6.33 0.00274 6.38 | 0.00271
25 6.60 0.00299 6.20 0.00298 6.40 | 0.00299
6 4.90 0.00285 5.16 0.00292 5.03 | 0.00288
0.083 12 5.00 0.00311 5.14 0.00314 5.07 | 0.00312
Glass 25 5.00 0.00383 4.82 0.00347 4.91 0.00365
6 5.55 0.00277 5.26 0.00259 5.41 | 0.00268
0.167 12 5.50 0.00299 5.30 0.00300 5.40 | 0.00300
25 4.80 0.00344 4.46 0.00344 4.63 | 0.00344
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pieces of data. The significance of this test arises from the fact that it tests the similarity of
cumulative distributions which are employed for the assignment of fibers strengths, randomly,
in the simulation technique.

When each strain rate was considered separately, carbon and glass fibers passed the test showing
reliable prediction. On the contrary, aramid fibers prediction curves shows overestimation of
fibers strengths at shorter lengths, for both strain rates. Moreover, the average parameters for
both rates were employed for prediction but only carbon fibers could pass the K-S test showing
the least sensitivity to strain rate. Examples of the prediction curves plotted with the actual data
are shown in Fig.3 that confirms the reliability of Weibull distribution for predicting strength
at different lengths of both carbon and glass fibers, and shows the overestimation in case of
aramid fibers. According to eqs. 4 & 7, the mean strength is proportional to the reciprocal
of the mth. root of length ratio. Then, considering the mean strength at length 25 mm as a
reference, predictions of the mean strengths are given in the last two columns of Table 2. These
values confirm the reliability of Weibull distribution for both carbon and glass fibers, and the
overestimation for aramid fibers. The size effect rule of aramid fibers, according to this data,
is complicated and has strain rate dependence. At the high strain rate, strength distribution
remains unchanged for all the lengths. The explanation of this phenomena, however, is not
within the scope of this paper and it might be dealt with elsewhere.

5. CONCLUSIONS

1. For the three kinds of fibers tested in this research and for the two applied strain rates,
Weibull modulus is a material constant in axial tension.

2. For the case of carbon fibers,the weakest link concept can be used for predicting the
strength distributions of shorter fibers regardless of the strain rate.

3. In case of glass fibers, the weakest link concept is still applied but with strain rate depen-
dence.

4. For aramid fibers, the size effect cannot be described by the weakest link concept that gives
an overestimation to the strength although distribution shape is efficiently described.
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