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#®X Applicability of One Dimensional Gradient Plasticity in
Identifying Fracture Process of Concrete

Khan Mahmud AMANAT "' & Tada-aki TANABE "

ABSTRACT: Numerical simulation of concrete fracture process requires a rational formulation of
the localized phenomenon keeping the continuity of strain between the localized zone and outside
the localized zone. Applicability of gradient plasticity models to capture localization has already
been established [1,2]. In this study a one dimensional gradient plasticity model is used to
investigate the effect of some parameters on the overall load-deflection response and on
localization phenomenon. Also some numerically obtained results are compared with experiments
that shows the model's applicability in mode-1 type fracture. It has been shown that one-
dimensional formulation is useful to verify test results and to select proper values of model
parameters.

KEYWORDS: concrete, fracture, finite element, plasticity, gradient plasticity.

1. INTRODUCTION

Localization of deformation refers to the emergence of narrow regions in a structure where all
further deformation tends to concentrate, in spite of the fact that the external actions continue to
follow a monotonic loading program. The remaining parts of the structure usually unload and
behaves in an almost rigid manner. The phenomenon has a detrimental effect on the integrity of the
structure and often acts as a direct precursor to structural failure. It is observed for a wide range of
materials, including rocks, concrete, soils, metals, alloys and polymers, although the scale of
localization in the various materials may differ by some orders of magnitude. In simulating
localized fracture process of concrete classical continuum models are applicable only when the
degree of material heterogeneity is small compared to the size of the specimen. In such cases the
presence of microcracks and microvoids can be neglected and the stress and strain can be treated
as averaged values. But when the scale of material heterogeneity becomes comparable with the size
of the specimen, like when macro-cracks develops, classical continuum models reach the limit of
their applicability. To solve this problem one can resort to damage evolution in a discontinuous
manner like incorporating discrete cracks provided one knows the development of crack patterns
beforehand and such formulations are difficult to generalize.

De Borst et al [1] developed an enhanced continuum model in which the failure function is
made to depend on the second-order spatial gradient of a fracture strain measure. The theory
preserves well-posedness of the governing equations during strain localization and therefore the
fracture strain fields remain continuous. The theory includes an additional parameter called
internal length scale related to the width of the fracture band. Such gradient-dependent
formulation of the concrete material permits localization of deformation without the loss of
ellipticity of the governing differential equations. As a direct consequence, in computational
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analyses a description of the finitely sized fracture process zone is no longer determined by the
finite element mesh, i.e. no influence by element size or element orientation can be noticed. Before
we apply such a model on a real structure, it is necessary to understand the behavior of different
model parameters on concrete fracture process. Structural concrete exhibits non-linear strain
softening due to non-homogeneous deformations resulting from macroscopic cracking [6]. It shows
some ductility, because the faces of cracks are connected by grain bridges, which delay crack
propagation and opening. With the use of a nonlinear description of concrete strength degradation
the influence of various model parameters are studied in this paper. Afterwards the applicability of
the model is investigated by comparing numerically obtained results with those of experiments
found in literature[4, 5].

2. FIELD EQUATIONS AND FINITE ELEMENT APPROACH

Here a brief description of the field equations of gradient plasticity [1] is presented. First we
consider the following set of field equations:

L's =0, (1)

e=Lu, 2)

¢=D(é-x—aﬁ), iz, 3
Jo

flo,x, V) =0 @)

In the above equations L is a differential operator matrix, ¢ and € are the stress and strain rate
tensors respectively, i is a displacement rate vector, D is the elastic stiffness matrix, A is a
multiplier being a measure of inelastic flow intensity, f is the gradient dependent failure surface
and K is an invariant measure of fracture strain or damage. In the gradient plasticity formulation it
is assumed that x = ni where 1 is a positive constant. In the following derivation 7 is assumed to

be 1.0 for simplicity although later different values of  were used with necessary changes in the
formulation.

The gradient dependence of the failure function makes the fracture flow consistency

condition f =0 to become a differential equation with second order terms,
n' 6 -hk+gVik=0 ()
with the notations,
9 ) 9
= _f h - _f' ’ g - _2 (6)
oK aV-x

Therefore, the inelastic strains are discretized using the same mesh of the finite elements as used
for the discretization of displacements. For finite element formulation an incremental-iterative
algorithm is presented by de Borst et. al. [1], which requires a weak satisfaction of the equilibrium
condition (eq.1) and the failure condition (eq.4) at the end of iteration j+1 of the current loading
step, which results in the following two variational equations:

Jse™D(de-dAn)dV = [su't,, dV - [eelo;dv @
v S A
and,

JsA[n" Dde~ (140 Dn)dn+gv2(an)]av - - [8rf(o;, x;, V2x;)dv ®
v \%

In the above equations d indicates an increment. In equations (7) and (8) only first derivatives of u
appears whereas for A second derivatives appear. Therefore u is discretized using linear C° shape
functions N and A is discretized using Hermitian C' shape functions h.

u=Na, A=hTA )
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where a is nodal displacement vector and A is a vector of nodal degrees of freedom for A. Using a
strain nodal displacement matrix B = LN and a vector p containing Laplacians of the shape
functions h we obtain,

e=Ba, VA =p'A (10
Substituting identities (9) and (10) in equations (7) and (8) and requiring that these equations hold
true for any admissible value of daand 8A, we obtain the following set of matrix equation,

K, Kj, |[da]_[fe+fa ey
K,, K, |ldA f,
where K,, is the elastic stiffness matrix, f, is the external force vector and f, is the nodal forces

equivalent to internal stresses defined conventionally. The off-diagonal matrix K, and the
gradient dependent matrix K, ; are defined as,

sa=-[Bn"DBAY, K, = [[(#+n" Dn)nn’- ghp'|av (12)
v

and the vector of residual forces f, due to inexact fulfillment of the fracture condition reads,

jf o,,k;,V2x;)hdV 13)

3. MATERIAL MODEL

In this paper we are dealing with one-dimensional mode-1 fracture problem. So the simple
Rankine failure surface is adopted. The failure surface is of the form,

f(G,K,VZK)-O'—Eg(K,VZK) (14)
where o is the axial stress and G, is the yield strength which depends on both x and VZk. Since

k is a measure of the degree of fracture process, it is assumed that dx = deP where deP is the
fracture strain defined as,

-9
15
~do (15)
The form of G, adopted in this paper is,
G, =5, (x)-g(x)V?(x) (16)

where G, (x) is a given standard softening rule and g(x) is a given gradient influence function.
Experimental evidence shows a nonlinear softening behavior of concrete in tension [5]. When
concrete fails in tension it typically leads to a sudden discontinuity at peak strength with a very
brittle appearance of the load-deformation response. For this reason an exponentially decreasing
non-linear softening rule similar to that shown in Fig.1 is adopted where,

G, =5,(x, fi,x,) 17)
in which f, and «x, are uniaxial tensile strength and ultimate value of equivalent fracture strain
respectively. The hardening modulus  is then obtained as,

of do,
5{2'3_: =5{(x)-g'(x)V*(x) bE}
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where the Laplacian is treated as an
independent variable during differentiation
and third order terms are neglected. Using the
analytical solution obtained by Borst et. al. [1]
we can relate & with g(x) via internal length
scale / as

g(x) = -1%5{(x) (18)

4. NUMERICAL STUDY

As stated before, in order to get an
insight into the behavior of the gradient-
dependent plasticity model a rigorous
numerical study was made with different
values of model parameters. For the purpose
of study a bar under uniaxial tension is
considered. The length of the bar is L = 100
mm with a unit cross sectional area. The initial
values of other parameters are, modulus of
elasticity E = 20000 N/mm? , tensile strength
f,=3 N/mm?, internal length scale I =5 mm,
ultimate value of equivalent fracture strain
x,= 0.01 and 1 = 1.0. Later different values of
x, and 7 are taken to see their effect. The solid
lines of Fig.2a and Fig.2b show the load-
deformation diagram and distribution of total
strain along the length of the bar respectively
for the initial values of the parameters. The
results correspond to mesh size of 40 elements
with a relatively denser mesh at central
region. To trigger localization at the center of
the bar only four elements at the center of the
bar (covering approximately 4 mm length at
center) were made weak by reducing tensile
strength by 10%. However, as the amount of
plastic strain increased during loading process
more and more adjacent elements entered into

localization process due to gradient effect -

until a steady state condition was reached
finally. Fig.2a also shows the effect of different
values of k, on the overall load-deformation
process and Fig.2b shows the same on strain
distribution. From Fig.2a it is clear that
smaller values of x, make the load-
deformation behavior more brittle in addition
to lowering the load at ultimate end
displacement. This is because lower value of
«,, implies smaller value of fracture energy for
same value of strength as it can be seen from
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Fig. 1. Standard tensile softening rule
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Fig.2a Effect of x, on load-displacement
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Fig.2b Effect of x, on distribution of
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the softening diagram. But its effect on growth of localization is not much significant as observed
from Fig.2b. Smaller values of x,, only make a slight decrease on the growth of plasticity. Similar
results are obtained for the variation of 1 and the results are shown in Fig.3a and Fig.3b. No
appreciable effect of | is noticed on the localized strain distribution as revealed from Fig.3b. But
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Fig.5a Comparison of load-displacement response Fig.5b Strain distrbution obtained
between analysis and test data of ref. [4] for test sample of ref. [4]

unlike x,,, smaller values of 1 has the effect of flattening the load-displacement response (Fig.3a).
The accumulation of x depends on the growth of A and these two quantities are related via 7.
Smaller values of n slows down the accumulation of x and hence it decreases the strength
degradation rate thereby making the post-peak response more ductile. No appreciable effect of 1
is noticed on the localized strain distribution as revealed from Fig.3b. Thus it can be inferred that
smaller values of n or higher values of x, will result in higher values of fracture energy.
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To assess the effectiveness of current formulation, it was tried to reproduce test results
numerically for the one-dimensional case. Fig.4a compares the numerically obtained load-
deformation diagram with that obtained by experiment by William et. al. [5]. Due to the lack of
sufficient data the value of initial Young's modulus was determined from the experimentally
obtained load-displacement diagram. The values of different parameters used are , length of the
bar L = 107 mm, Young's modulus E = 22100 N/ mm? , ultimate value of equivalent fracture strain
k,=0.0035, n =1.0 and internal length /= 5 mm. Fig.5a shows similar comparison for a test on
mortar specimen reported by Chen [4]. For this simulation L = 114.3 mm, E = 9850 N/mm?,
K, = 0.0035,1 = 1.2 and I = 12 mm. Fig.4b and Fig.5b shows corresponding strain distribution along
the length of the bar which are obtained numerically. Both from Fig.4a and Fig.5a a fairly good
agreement between experiment and numerical analysis is found though at later stage of loading
process a little overestimation of strength by numerical analysis is observed. Fig.5b shows a wider
localization band than that of Fig.5a. This is due to taking of a larger value of I (12mm) for the later
case.

5. CONCLUSION

The applicability of one dimensional gradient plasticity formulation for non-linear softening
behavior of concrete in tension is demonstrated. Although one dimensional formulation has
limited application, comparison with test results indicates the potential of gradient dependent
formulation in capturing localization with strain continuity and shows its usefulness in verifying
experimental results. The examples show that with a careful selection of parameters, the model can
be successfully applied to simulate fracture process of concrete. It was observed that post peak
response is independent of the formation of localization band. However it is obvious that the
choice of a particular softening diagram governs the shape of non-linear post peak response. Hence
a careful choice of softening diagram is necessary to successfully trace the experimental results.
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