oy ) = b LR KRS, Vol 18, No. 2, 1996

#m3X Comparison on Two Optimal Shape Design Methods-Sensitivity
Analysis and Simulated Biological Growth Method

Kai-Lin HSU*! and Taketo UOMOTO*2

ABSTRACT : In the field of shape optimization, one of the interesting fields is focused on how
to achieve the uniform stress distribution on the surface of design structures. The structures
satisfying this design criterion can be observed in many biological tissues, such as trees or bones.
In this paper, the authors attempt to conduct a comparison between a new optimal shape design
method called "simulated biological growth method" and a structural optimization approach
using sensitivity analysis also developed by the authors. Based on the same design criterion, the
efficiency and difference of the two methods are illustrated by couples of examples.
KEYWORDS : optimal shape design, simulated biological growth method, stress concentration,
optimality criterion method.

1. INTRODUCTION

Generally speaking, the approaches for structural optimization can be categorized into
mathematical programming and optimality criterion method; the former one is related to
mathematical techniques without considering the physical essence of the design problems and
the latter one is intuitively devised by designers based on their observation on the physical
characteristic of problems. As it is known, the methods by mathematical programming are
developed on rigorous theoretical background but possibly inefficient for finding out optimal
solution while the methods by optimality criterion method commonly lack the sound theoretical
support with the potential advantage of higher efficiency on search for optimal solution. One
well-known method of the optimality criterion methods is full-stressed design method. In
addition, sensitivity analysis is essential for structural optimization for evaluating and updating
the design variables by gradients of structural response with respect to design variables. However,
the time-consuming process for obtaining the sensitivity coefficients seriously deteriorates the
efficiency of the optimization process. In order to avoid the problem, gradientless optimization
is considered to be one of the solutions. Based on the results of those researches on gradientless
optimization, it indeed offered the designers some effective and convenient alternatives for
structural optimization.

Among the proposed methods for gradientless optimization, one new proposal was highly
noticed. According to the observation of Mattheck and Burkhardt [1] on natural biological
tissues, e.g. trees or bones, one optimal shape design method called "simulated biological growth
method (or adaptive growth method)" was presented by swelling the overloaded parts or
shrinking the underloaded parts of the design structure. And similar concept of this method was
also suggested in the work of several other research groups, such as Hsu and Uomoto [2] and
Suh, Anderson and McDonald [3]. In essence , the idea of simulated biological growth method is
also derived from the concept of optimality criterion method for considering the reduction of
stress concentration. As mentioned in [1], the stresses along the design profile, e.g. notches or
sharp edges, can be effectively reduced by computer simulation of tree growth. Meanwhile, for
very similar optimization problems, some other researchers could also find out the optimal
solutions by their proposed methods. By observing the results acquired by these different
methods, it seems the results solved by the new proposed method (simulated biological growth
method) show better efficiency but no direct comparison verified this observation. However, as it
is recognized, there exists in this field no universally accepted solution method. As a result, in
this paper, the authors would investigate the efficiency of this simulated biological growth
method by comparing with a conventional optimization method also developed by the authors,
both of which are based on the same optimality criterion for reducing the stress concentration.
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In the following context, section 2 is given for defining the formulation of the objective
function. And the algorithm of simulated biological growth method is briefly explained in
section 3. For the interested readers, please refer to [1,2] for detailed description of this method.
As for the sensitivity-analysis optimization method developed by the authors, the features of
sensitivity analysis and the optimization procedure are respectively given in section 4 and 5.
Finally, for the purpose of comparison, one analytical example for the case of a square plate
under biaxial isotension load with central diamond-shape notch is illustrated in section 6.
Through the comparison, the efficiency of simulated biological growth method can be
confirmed due to its excellent performance on saving computational cost.

2. FORMULATION OF THE PROBLEM

As indicated in [1], the biological structures self-optimize their shapes by growth with
respect to the natural load applicd. In this case, the word "optimum" means that within all the
design structures, a state of constant stress at the surface of the biological components should be
observed for all the natural loading case applied. By considering this effect into the effort of
optimization process, the optimization problem in this research can be defined as the problem to
find out the state of constant stress distribution along the design profiles; that is, the optimality
criterion considered here is to change the shape of the design profiles for reducing the stress
concentration. This objective can be alternatively achieved by minimizing ratio of maximum
stress to the object stress along the design profile, which is expressed in eq.1, where 'K : the
design profile, s : the design point along the design profile, geq(s) : equivalent stress of cach
design point and Oobj : object stress, that is, average equivalent stress at each iterative step. By the
same definition of objective function for different optimal methods, the effect of optimization
for each method can be clearly clarified.
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3. SIMULATED BIOLOGICAL GROWTH METHOD (GRADIENTLESS METHOD)

The design idea of the simulated biological growth method was originated from the
observation on biological structures which can adapt themselves to external loads for reducing
stress peak with growth or atrophy. The basic procedure for an simulated biological growth
approach is composed of two stages : the first one is FEM static analysis for obtaining the stress
distribution over the design domain, which can be one part or the whole domain of the design
structure according to the need of the designer. Then, in order to execute the second stage, the
growth law using fictitious strain , which was proposed quite divergently by different research
groups (referred to [1, 2]), is introduced to produce the fictitious equivalent nodal loads. Then,
an incremental growth analysis based on this growth law can be carried out to generate the
incremental displacements for updating the design structure. After the design structure is
updated, the above-mentioned process is repeated again until the convergence of eq.1 can be
recognized. The growth law , the governing equation of the incremental growth analysis and the
generated fictitious equivalent nodal loads are given in eqs.2,3 and 4 respectively. Here, the
definition for {Ag} follows the one given in [2]. However, as indicated in [1], it also can be
defined as thermal loading for executing the second stage as thermal analysis.

AI;‘B — Onbj_(, bas 6 (2)
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where A ) : fictitious strain, o,,, : reference equivalent stress and d,, - Kronecker delta
[K]{Au}r={Ag) (3)

where K : stiffness matrix, Au : nodal transformational vector

{Ag} = L) [B()]'[DI{ 4¢ e (4)

where [B]" : transpose of strain-displacement matrix, [p] : elastic modulus matrix
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4. SENSITIVITY ANALYSIS

The simulated biological growth method is derived in order to avoid the process of
sensitivity analysis. However, for most of the existing optimal shape design method, the
acquirement of sensitivity coefficients is inevitable. For the evaluation on the efficiency of the
simulated biological growth method, one optimal shape design method using sensitivity analysis
was also developed by the authors, the details of which is explained in the next section. As
mentioned earlier, the objective of the optimization problem is to reduce the stress concentration.
As a result, the sensitivity coefficients of stresses with respect to the design variable is essential.
The sensitivity analysis in this paper adopted the semi-analytical method by a finite difference
method [4]. The algorithm of the sensitivity analysis is briefly described here. By the modeling
of FEM analysis, the governing equation in terms of displacement, can be expressed in eq.5,
where [K] is the stiffness matrix, {u} is the nodal displacement and {R} is the nodal force vector.

[K{u}={R} (5)

In general , both [K] and {R} are dependenton the design variables. Hence, the derivatives
of eq.5 with respect to any design variable a,, will be

du K |, \_ [IR (6)
[K]< aa,,,>+[aa,,, \'lf_<6am}

by solving eq.6, the derivatives of {u} with respect to design variables a,, can be obtained. Then,
the derivatives of stresses with respect to design variables a,, can be procured as follows:

do

da
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da m da m

m
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where [D]: elastic modulus matrix, |J| : determinant of Jacobian matrix [J],
and [B]: strain-displacement matrix.

5. OPTIMALITY CRITERIONAPPROACH (GRADIENT METHOD)

As stated in section 3, in order to evaluate the gradientless optimal shape design method
derived from the concept of biological growth, one optimal shape design method using
sensitivity analysis was also proposed by the authors. For brevity of the context, only the features
of this method are explained in the following. This method also belongs to the optimality
criterion approach. In order to reduce the stress concentration of the design structure, the nodes
on the design profile are selected as the evaluation points used for the calculation on the
objective function as shown in eq.1. The stresses for each evaluation point can be represented by
the equivalent stress (here, the von Mises stress is used); that is, the equivalent stress is the
functional of the stress tensor and the stress tensor is the function of nodal coordinates in the
case of static analysis. These relationships can be expressed in eq.8 in the case of two-
dimensional elasticity. By averaging the object stress on each evaluation point, average stress
Tayg can be obtained; that is, the average stress is the functional of equivalent stress on cach
cvaluation point.

Y/
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By Taylor's first-order expansion, the average stress can be approximated as follows:
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and we differentiate the components of stress tensor with respect to the design variables (i.e.,
X and Y), as follows :
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where X = x;.X5,....xN; Y = ¥1.,.y2....,yN and N is the number of design points, By substituting
egs.10 - 12 into eq.9, eq.9 can be rearranged as

t 3
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o Bij
where 3(8) is the error functional and i,j is the node number of design point , 1,J = L.N. It can
be expressed in the form of matrix in eq.14 by rearranging eq.13. As you can observe in eq.14,

the right side of equation can be approximated by multiplying one constant (¢) for diminishing
the effect of error functional.
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As shown in eq.14, the order of coefficient matrix[(xij,[:}ij] is N * 2N. As a result, the
solution of (dX,dY) cannot be solved by only N equations. Hence, some other information
related to (dX,dY) needs to be introduced into eq.14. For solving that, the updating vector for
each design point is assumed to be in the direction of the bisector of the angle defined by the
design point with its neighboring points, as presented in Fig.1 (Here, the angle is defined by j -1
- 1* and the direction of updating vector is along the direction of i -i"). In order to shift the node
itoi',one ghost point i* is introduced for keeping the same Euclidean distance for i -jand1 -
1*. The location of i* can be expressed by eqs.15 - 17.

Xi*=xi+Y(xi—l_Xi) (15)

Yu=Yi+¥(¥io, -Y) (16)
with
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Therefore, by these predicated geometrical conditions on updating vectors, the relationship
tor (dX,dY)can be established as

oY Kia T (18)
/6X yr'*—'yhl

by substituting eq.18 into eq.14 and rearranging eq.14, the order of coefficient matrix [ Bij]
becomes N * N; that is, after obtaining the derivatives of {u} with respect to design variables a,,
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by solving eq.14 and using the relationship
given in eq.18, the solution for the updating
vector can be obtained. With these updating
vectors, the shape of the design structure will
be changed by adding these updating vectors
to the coordinates of design points. This X
process will be repeated until the convergence l — = >
of eq.1 canbe verified. However, due to the ji = ixi

possible existence of unsmoothed design '

profile after update, some spline function will Fig.1 Local Shifting of Node i to i'

be used to smooth the design profile at each

Iterative step.

6. ILLUSTRATION OF THE COMPARISON ON THE TWO APPROACHES

As the purpose of research mentioned previously, one example for comparison is
tllustrated here. The example 1s a square plate under biaxial equi-tension with central diamond-
shape notch, the FEM model of which is simplified in Fig.2 due to its symmetry. The points
on the notch (i.e., design profile) were chosen as design points. Fig.3 indicates the optimized
shapes obtained from the two methods with few difference. The convergence of objective
functuon is shown in Fig.4 with good acceptance for both methods. Due to the excessive
distortion of elements during the optimization process by sensitivity analysis method (SA), the
smooth process by use of spline function led to the abrupt change of the continuity,
represented by elliptics in Fig.4. Fig.5 gives the variation of structure area, in which the
structure optimized by SA has similar area to the one optimized by simulated biological growth
method (SBG) for the deviation of area is only 0.288%.
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The strain energy within the design structure can be effectively reduced as shown in
Fig.6, which indicates the optimized structure can undergo higher external loading. As
emphasized in section 1, the effect of reducing stress concentration by the two methods can be
clearly observed in Fig.7 ( Here EQS is equivalent stress in the form of Von Mises stress).
The stresses along the design profile after optimization can effectively tend to be uniform,
which meets the requirement of the design problem. The reduction of stress concentration
performed by the two method in the process of optimization are given in Figs.8 and 9
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respectively. By observing Figs.7 - 9, there really exists some variation between the two
methods but the deviation can be regarded acceptable.
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Indeed, through the above figures, the agreement of the optimized results by the two
methods can be clearly observed. However, on the other hand, the computational cost spent
by the two methods was quite different. For the FEM model of this analytical case, in which
there are 153 nodes and 128 elements, the programs were executed on SUN Sparc station 10.
For SBG, one iterative step only took 1.2 sec while about 198 sec spent by SA: that is, only
98.4 sec was needed for SBG to find out the optimum (82 iterative loops) while about 17820
sec (about 4.95 hr) nceded by SA. As a result, though similar optimal solutions could be
achieved by the two methods, the high efficiency of the simulated biological growth method
for saving a lot of computational cost was obviously confirmed.

7. CONCLUSIONS

By the observation on the two methods discussed in this research, the 1ssues clarified in
this study can be concluded as follows : (1) the high efficiency of simulated biological growth
method could be confirmed with the comparison on another optimality criterion method for its
excellent saving on computational cost; (2) the availability of the method using sensitivity
analysis suggested in the rescarch was also verified for its optimal solution highly similar to
the result by the simulated biological growth method. However, the efficiency of this method
was seriously influenced by sensitivity analysis. And such disadvantage makes this method
quite unattractive when compared with the simulated biological growth method.
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