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a3 Evaluation of Fracture Energy of Early Age Concrete by
a Non-Local Plasticity Model

* . *k
Khan Mahmud Amanat . Tada-aki Tanabe

ABSTRACT: A non-local plasticity [1.2] model is used to investigate the effect and applicability of using
different forms of gradient parameter on localization phenomena and on fracture energy consumed. It was
found that the form of gradient influence factor significantly influences the formation of localization band and
the consumption of fracture energy. Based on the results an approximate analytical expression is proposed to
calculate the fracture energy when the gradient term is chosen independently. Finally some experimental
results are simulated to show how the values of different material parameters can be selected.
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1 INTRODUCTION

Fracture of concrete is a highly localized phenomenon where failure is induced by concrete cracking
principally in mode-T type crack and the post-peak load response decreases sharply with increasing
deformation. Study [3] shows that in the fracture process zone stress does not drop suddenly. instead. it
follows a progressive strain softening due to non-homogencous deformations resulting from macroscopic
cracking [4]. It shows some ductility. because the faces of cracks are connected by grain bridges which delav
crack propagation and opening [4]. Recognizing the strain softening characteristics of the fracture process of
concrete it is possible to simulate the same in the domain of continuum mechanics. Application of classical
plasticity can be applied but it has few major drawbacks -- the result is mesh sensitive. fracture process zone
cannot propagate beyond those area defined explicitly beforehand. strain field between the boundary of
fracture process zone and elastic zone is discontinuous, and the ellipticity of the governing differential
equation is lost in the post peak regime. These drawbacks can be overcome by the use of enhanced continuum
approaches like the integral approach [5] or gradient plasticity approach [1.2]. In this study the gradient
approach has been adopted to simulate the fracture process of early age concrete.

The study presented here is a continuation of the work done earlier by the authors [6.7]. The gradient
plasticity formulation contains one important parameter ¢ which is called the gradient influence factor. The
gradient influence factor g governs the extension and growth of localization zone. As it will be shown later. g
affects the final load-displacement response of the structure, thus affecting the fracture energy consumed by
the structure. Hence it is necessary to incorporate the influence of g in fracture energy calculation. In this
study this parameter is studied in details and an approximate analytical expression is suggested to calculate
the fracturc energy. Finally using a proposed softening rule analysis was performed to simulate the fracture
process of concrete at early ages.

2 MATERIAL MODEL

In gradient plasticity [1] approach the Laplacian of the damage parameter. k. is incorporated in the failure
function. Thus the failure condition reads as.

Sox.vx) =0 (1)
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It is imperative that for simple one dimensional case. k can be directly set equal to the plastic strain and for
two dimensional case it can be a direct function of plastic strain components def; . Setting /' =0 we get the

flow consistency condition (from eq.1),

Y o 9
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—V*(dk) =0 (2)
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Assuming that the damage parameter  is related to the plastic multiplier A as K = nA where n is a positive
constant and using the notations,

of ; :
n= L . h o= 61 . g=m— a,/;,_ (3)
Jo oK EAYAR
we get the plastic flow consistency equation from eq. (2).
G-+ gVin=0 4)

As a result of the presence of the term V2, it is not possible to solve for A directly from eq.(4). Hence in
gradient plasticity X is solved globally by making it a global unknown [1]. In this paper it is considered that g
is a function of damage k only. The failure function in eq. (1) has the form,

f(0.K.VK) = 9(0) = 0, (K. V’K) )
where @(0) is a function of stress components (usually stress invariants) and o, is the yield strength which
depends on both x and V-x. For one-dimensional case ¢(0) is simply the axial stress o . In two dimensional
analysis @(0) may take various form such as Rankine’s principal stress criteria or Von Mises criteria etc. In
this paper. fracture of early age concrete in simple tension is studied and Rankine’s principal stress criteria of
failure is adopted. Thus.

@(0)=0,, = —;(0_‘, +0, ) + —; \/(ox +0, ): + 41;, (6)

In (0,.0,.7,,) stress space Rankine failure function possesses a vertex at (0.0.0) point. The existence of
this vertex poses some difficulties in return mapping algorithm. In classical plasticity approach this difficulty
can be overcome by assuming each smooth part of the failure function as a separate function and then
applying Koiter’s generalizations. In gradient plasticity this approach is not suitable because A is also a
global variable like the displacement field. An alternate approach is to smoothen the failure function in the
vertex regime [8]. In this approach the Rankine square shaped failure surface in tension-tension regime is
replaced by a smooth circular one. When this is done, the failure function takes the form,

2

[ = /(012 +0%) -0, = \/(oi Gy +rf_1,) -0, =0 @)

However, an incompatibility exists along the o, and o, axis in the stress space. Therefore this smoothing
approach is will be made active when stress state will be dominated by tension and not by shear.

3 GRADIENT INFLUENCE FACTOR AND CALCULATION OF FRACTURE ENERGY

The form gradient dependent vield strength. Z:'g, adopted in this paper is.

0, = o, (k) -g(x) v’k (8)
where o, (k) is a given standard softening rule and g(x) is a given gradient influence function. As it is seen
from eq.(6) the degradation of yield strength depends on g(k) as well as on ¢, (x). Hence it is logical that the

load displacement response or the fracture energy consumed will be governed. in part, by the gradient
influence factor g(k) and thus. the selection of the form of g(x) is an important consideration in gradient
plasticity formulation. For a one dimensional problem with linear softening (softening modulus / constant)
and constant ¢ Borst [1] obtained a relation,

g=-/7'0;(|()=—/2/7 9)
where / is the internal length scale such that the crack band width is given by
w=2mtl (10)

When the softening rule o, (k) is nonlinear and g is taken according to the first part of eq. (9) then eq. (10)
becomes approximate. An exact analytical solution for such a case is a mathematically formidable task. In all
the previous studies with gradient plasticity approach, g(k) has always been taken according to eq. (9) so that
the width of the fracture process zone can be estimated by eq. (10). If the width of the fracture process zone,
w. is known then the fracture energy is given by.
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Table 1. Softening rule

Description Figure
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Table 2. Different forms of g(x)
Type Description Figure
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0
where , is the ultimate value of damage parameter at which 0, (x) becomes zero. Equation (11) is valid only

when w is constant and can be approximated by eq. (10), i.e.. when g is taken according to eq. (9). However.
the basic formulation of gradient plasticity does not impose such limitation on the form of g(x). In this paper
several forms of g(k) are considered to study how different forms of g(x) influences the post peak response.
Table 1 lists the softening function and table 2 lists the different forms of ¢(x) which are considered in this
paper.

When g(x) is chosen independently of eq.(9) it is also necessary to develop an appropriate expression for
fracture energy since eq.(11) remains no longer valid. In this study it is assumed that the actual value of
internal length scale varies according to the values of g(x) and o/(x) at any stage of damage but maintains
the basic form of eq.(9). Thus.

[=i(x)= |-EK) (12)
0, (k)
Now eq.(11) is modified by taking w inside the integral and substituting 25t/(x) for w.
KII
G =2 [1(x) &, (x)dx (13)

0
In such a case the term / in the different expressions in table 2 merely becomes a material parameter rather
than the actual internal length scale.
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4 NUMERICAL STUDY

A rigorous numerical study was made in one
dimension  with different combinations of
softening rule and gradient influence factor. For
the purpose of study a bar under uniaxial tension
is considered. The length of the bar is L = 100
mm with a unit cross sectional area. The initial
values of other parameters are. modulus of
elasticity £ = 20000 N/mm®, tensile strength

Ji=2 N/mm’. internal length scale / = 4 mm. For

the softening rule. ultimate value of equivalent
fracture strain was Kk,= 0.006. The results
correspond to a mesh size of 30 clements with a
relatively denser mesh at central region.  Three
noded gradient enhanced elements were used with
quadratic shape functions for displacement field
and cubic Hermitian shape functions for A. To
trigger localization at the center of the bar only
two elements at the center of the bar (covering
approximately 3.2 mm length at center) were
made weak by reducing tensile strength by 10%.
However. as the amount of plastic strain increases
during loading process more and more adjacent
elements entered into localization process due to
gradient effect until a steady state condition was
reached finally.

Fig.1 shows the strain distribution obtained for
different types of g(x). It is seen that different
forms of gax) resulted in different amount of
damage growth. The width of the fracture
localization zone were also different for different
types of g(x). The load-displacement diagram
obtained for different g(x) is shown in fig.2. Since
in cach case the arca under the load-displacement
diagram is different. the fracture energy is also
different for each case. If the fracture cnergy is
calculated using eq.(11) by taking w=27w/ it will
give same fracture energy value for all the cascs
since ¢, (k) is same for all the cases. The energy
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Table 3 Material parameters
Age E, vica | e | Kk | fi. |[l.mm I —

MPa MPa 40 | I lepcrimélt
- - Analysis
16 hour| 1000 [0.15] 2.0 0.021025| 2.0

N
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1 Bazant
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N
n

calculated from the arca under the load- 20
displacement curve is the actual energy consumed.
This energy can be analytically estimated by using
the eq.(13) this should agree with the value
calculated from the load displacement response. A 0
look a fig.3 reveals that the energy given by eq.(11) 16 hir 48 r
gives unacceptable values for the first three types of
£(x). On the other hand. the energy calculated by
cq.(13) and the same calculated form Joad Fig.7 Comparison of fracture energy
displacement responsc agrees well. The small obtained by different method

differences observed between these two process is

due to the assumption made in eq.(12). Actually /(x) follows a more complex route with the change of damage
and its exact analytical formulation is mathematically formidable. However, the accuracy of eq.(12) and
¢q.(13) are well enough for all practical purposes as revealed from fig.3. Thus, the proposed equations (12)
and (13) cnables us to take any reasonable form of g(x) instead of taking it as —/"6,’(!() as done in the
previous works [ 1.6.7.8].

Fracture Energy, N/m

Age of concrete in days

5 ANALYSIS OF EXPERIMENTS

In the next stage of this study the two-dimensional formulation was applied to simulate test results [9] on
carly age concrete. For this purposc the fracture condition of eq.(7) was adopted. Test were made on concrete
specimens at ages 9. 16, 24, 48, 72 and 102 hours. Due to the space limitation results for only the specimens
of age 16 hour and 48 hour are shown here. The original specimen was 300mm long. 140mm wide and 40mm
thick and had a pair of notch having dimensions 4 4mmx25mm. A pair of 18mm diameter steel rods were
embedded longitudinally at cach end of the specimen to facilitate loading. The length of the embedded rods
were 100mm. Due to the presence of these rods the outer 100mm portions at both end of the specimen were
rather stiff compared to the central 100mm portion. At early age both the stiffness and the strength of concrete
are very low. So it is quite reasonable (o assume that for young age concrete. the two ends having embedded
rod clements will behave almost rigidly as compared to the central portion. Based on such assumption when
the test specimen was discretized into finite elements. higher stiffness values were assigned to thesc two
L00mm outer portion. Also another finite element mesh was considered which represented only the central
100mm  portion. After making some preliminary analysis. it was observed that both types of mesh
discretization give virtually the same result when high stiffness was assigned to the 100mm portions at the
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ends in the former type of mesh. But the second type of mesh was computationally more efficient since it
required less number of elements. Hence the later type of discretization was adopted finally for the numerical
analysis and the mesh is shown in fig.5.

The values of different material parameters that were taken for the numerical simulations are shown in
table 3. The Young's modulus was calculated from the initial slope of the stress strain curve obtained
experimentally and an averaging was done over the values calculated from each of the six strain-gages (gages
1 to 6). Due to the lack of experimental data, Poisson’s ratio was taken as 0.15. Other values such as x,, etc.
are taken in such a way that the numerical results best fits the experimental data. Analysis was performed
with g(k) as g4.

The fracture energy was calculated by Lokuliyana [9] from the experimentally obtained stress strain
relation. A comparison of the calculated values with the Bazant's [10] equation was also made. Figure 7
summarizes the fracture energy calculated by the different methods. It is observed that the G, calculated in
according to eq.(13) are somewhat smaller than the experimental values. The results are on the safe side and
may be considered acceptable since the difference is not too large as compared with the G, calculated using
Bazant’s formula which gives too small fracture energy to be considered acceptable.

6 CONCLUSION

The form of the gradient influence factor has significant effect on the overall post-peak response of the
structure and on development of the fracture process zone. A modified way of calculating the fracture energy
is presented in the context of simulating fracture and localization of concrete structures by gradient plasticity
approach. Incorporation of the variable internal length scale parameter inside the integral of the fracture
energy expression enables us to use any reasonable shape of the gradient influence factor while resulting
approximately correct value of fracture energy.

A softening function is presented to describe the strength degradation of early age concrete. A two
dimensional analysis is performed and it has been shown that using the proposed softening rule the fracture
process of concrete at early age can be simulated and its fracture energy can be evaluated with reasonable
accuracy.
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