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a3 A New Technique for Reinforced Concrete Beam Analysis Using
the Modified Lattice Model

Fawzy Mohamed El-Behairy™' and Tada-aki TANABE™

ABSTRACT. A new technique to modify the lattice model is described by the authors. This new method
significantly depends on the calculation of the minimum total potential energy of the structure starting from
the elastic stage up to the failure stage inside each increment of the calculation. The adoption of the total
potential energy, angle of inclination of the diagonals and the best position of the hinges along the depth of
the beam are very important parameters affecting the results of the lattice model and are studied in this paper.
The applicability of the modified lattice model is examined by proposed shear strength equations and existing
experimental data.
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1. INTRODUCTION

It is generally agreed that the truss analogy concept is easily applied to the reinforced concrete
structures. However, there exist several different truss models to analyze the shear resisting mechanism in the
reinforced concrete beams. But in each model there are still some problems to be investigated. For example
Lattice Model, which is first proposed by Niwa and et al "' and extended later by the authors in 3-Dimensions
“I5] has several fundamental problems to be clarified. In his model arch member is a very important concept,
because after yielding of shear reinforcement, the model could explain the increase in the shear capacity
while the simple truss mechanism could not, specially in case of deep beam. Niwa I thus showed some
important effect of the arch element in the shear carrying capacity.

In his work, Niwa determined the thickness of the arch element by minimizing the total potential
energy for the whole structure. But, he did not give any physical explanation for the minimization of total
potential energy and once the arch thickness is determined in the elastic stage, he kept it unchanged through
out the whole loading history. Therefore, minimized potential thickness may be shifted during the loading
stages. But its shifting is simply neglected.

Here, in this paper, we clarify this point in the first place and show the improved accuracy by
performing minimization at every loading stages. Second problem is the rational reasoning for the strain
incompatibility through the width of the beam by separating the arch member and the truss member within
one beam. The third problem is the most appropriate discretization for truss member which is studied to find
out the suitable form to apply our modified model. Also, the fundamental characteristics of the arch
mechanism for shear resistance of reinforced concrete members is discussed, specially the strain values
between the arch element and the diagonal element in the same cross-section of the beam are not in equal
values'®. The strain might not be uniform in the direction of member width"®!.

Finally, in this paper, authors try to give rational reasoning or rational explanation for all these
problems. Furthermore, basing on the modified and rational model we give some numerical calculation
results which may be useful in its real application.
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2. RATIONAL REASONING OF THE SEPARATION OF THE ARCH ELEMENT
AND TRUSS MEMBER WITH A BEAM

Structural action is normally a combination of series and parallel couplings of the cracking zones
and the uncracked (elastic) zones. In the Modified Lattice Model, we simulated these zones with continuous
pairs of tension and compression members. The arch member is considered as a very important element in
our study, because it represents the core of the beam. A design code in Japan[l] assumes two dimensional
stress field; but if a member section is wide enough, the stress might not be uniform in the direction of
member width. It is also known experimentally by Ichinose [9] that the values of the strains or the stresses of
the beam are not uniform along the width in the same cross-section. It means the stress-strain diagram is not
constant in the direction of the width of the beam. In our model we separate the arch element and the
diagonal element, each one of them has its stress-strain distribution. Arch element has the ability to resist a
large portion of the applied load. So it is very important to look for the change of the thickness of the arch
element during the calculation.

3. ADOPTION OF MINIMUM TOTAL POTENTIAL ENERGY

It has found that there is a relation

between the thickness of the arch element and the P
corresponding  total  potential energy of the B lale
structure. Niwa et al ") showed that if the ratio of

the width of the arch element is assumed to be “t”, (1")"%\\ "
the value of “t” is determined by minimizing the =
total potential energy for the whole structure. But in

this work it is found that this thickness is
increasing gradually during the loading from the
elastic stage up to the complete failure of the beam.
It means that the area of the diagonal members are
decreased gradually during the loading from the

Fig.1 Cross- Section of a spring

elastic stage wup to the complete failure. The
physical explanation of the adoption of minimum Arch Element

total potential energy may be given first using a Tuss Flemeni 2 N Arch Element
very simple spring model as shown its cross-section

in Fig.1. The total potential energy for this model is /
as in equation (1). Substituting for 0 and € values

we can get equation (2). XL (® Arch Element
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Fig.2 The Solved Example
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From equation (2) 7 is increasing monotonically = 100t Load 3 60
with the increase of the area of the stiffer portion. E s
Therefore, the stiffer portion should occupy the W —o00[ 40 8
total area to make the potential minimum. o-

. — -300[ T.P.Energy 20
However, our beam element is not exactly the same | /
category. So, we show the real situation using the 400 0
model shown in Fig.2. That is, common material 0.1 0.3 0.5 07 0.9
exist as member (3) but each of member (1) and (2) “t” Values

consists of two elements as a truss element and arch
element with a different rigidity and connected to
member (3). The total potential energy of the
structure is calculated from equation (3).

Fig.3 Behavior of the T. P. Energy and
the Applied Load with “t”
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where u is the vertical displacement of the structure under the applied load “P”. Taking dz /ot =0 to get “t”
value at the minimum total potential energy and substitute it in the energy equation. Fig.3 shows the relation
of the total potential energy and the applied load “P” for the different values of “t”. From this figure we can
find that the point at the minimum total potential energy corresponds to the point of the maximum applied
load at a definite value of “t”. So, in the Modified Lattice Model we calculate the total potential energy for
different values of “t” starting from 0.01 up to 0.9 with a very small increment. By minimizing these values
of the total potential energy we can get the corresponding “t” value for each step of the calculation.
Depending on this value of “t” we can calculate the area of the arch element and the subdiagonal elements for
each step of calculation as in Fig.5. So, when we consider the value of the total potential energy and the
corresponding area of the different elements inside each step of calculation we get the real response of the
beam which becomes almost close to the experimental results along the different loading stages as we will
see in the next section.

4. APPROPRIATE DISCRETIZATION METHOD FOR TRUSS MEMBER
Next thing to do is the clarification of the appropriate
discretization of Lattice member which angle may be v |
predetermined as 45 degrees. To investigate this problem three
different truss models depending on the number of the pairs of
diagonals along the depth of the beam are investigated. The
three different forms are as shown in Fig.4.InFig4 the R.C. I
Fig. 4 (a) Model (1)
v

v f—

|

Fig. 4 (b) Model (2) Fig. 4 (c) Model (3)

Fig. 4 Forms of Model of Simulation
beam has been simulated under bending

and shear as a simple truss components. /lf L /.I'
The compressive stress in the upper part of Flexural Compression _|

the beam is resisted by concrete in the form Member.

of a horizontal strut with a cross-section w4 of Arch member ———

area equal to the area of the upper

rectangular in Fig.5. The tensile stress in Width fTruss )

the lower portion is taken by the bottom member \_ \

steel in the form of horizontal members, in b(1-2| bt /| ba-n2
addition to the horizontal concrete fibers in Flexural Teasion

the lower part with a cross-section area Zoue —t

equal to the area of the lower rectangular in

Fig.5. To resist the shear forces inside the

beam, the truss model has diagonal Fig. 5 Cross -Section of Concrete Beam

concrete tension and compression members in the Modified Lattice Model

with an area as shown in Fig.5 which be

fixed after determined the value of “t” as mentioned before. Also the model has vertical steel members which
represent the shear reinforcement in the web. Fig. 5 shows the schematic diagram of the cross section of a
concrete beam modeled into the Lattice Model. The arch member is assumed to be a flat and slender one
connecting the nodes at both ends with an area as shown in Fig.5. To study the applicability of the Modified
Lattice Model we examined six different beams as shown in Table 1 using the above mentioned three
different forms of truss models.

— 479 —



Table 1 The outline of Experimental Data

No | Cross b h d a/d f A fy Ay fwy s
Sec. cm cm cm MPa | cm2 | MPa cm?2 MPa
1 R 20.3 50.8 | 425 | 2.15 310 | 23.1 530 1.42 530 1.33
2 R 203 | 45.7 389 | 2.00 246 | 245 320 1.42 320 18.3
3 R 300 | 350 | 300 | 350 [ 237 12.2 419 0.56 314 11.0
4 T 30.0 35.0 30.0 3.50 23.7 12.2 419 0.56 314 11.0
(15.0)
5 R 450 | 60.0 | 525 | 2.86 | 439 | 95.7 383 1.43 355 25.0
6 R 450 | 60.0 | 525 2.86 | 662 | 95.7 383 1.43 355 15.0
Fig. 6 shows the comparison of 0. -
the calculated results by the Modified
Lattice Model and the normal Lattice
Model with Clark’s experiment™ (No.4 in
Table 1). Subsection diagonal members are
increased from model (1) to model (2) to 03 Mod 1 7z
model (3), so the strain energy has been E ’ e ey s
decreased for the decrease of the original S/ S5
length of failure elements. Also the § 7
cracking load decreased from model (1) to = ya
model (2) and model (3) for the decreasing E 1
of the elastic energy of the failure elements. 0.15 M)d.3
From the getting results we can A Modf. LM —
analyze the behavior of the three forms of : Nom LM oo
the model that under the applying load and
after the cracking occur the neutral axis 0 Exp. Qarck © <
inside the longitudinal beam starts to move 0 0.002 0.004 0.006 0.008
upward while the development of the
cracks. The height of the development of Displacement (M)

the cracks depends on the cross-section of
the beam and the value of the steel
reinforcement inside the beam. In case of
model (1) if a crack occurs, it means the depth of the crack equals the whole depth of the beam. After the
initiation of this crack the complete failure takes place suddenly which is not logically, because
experimentally, failure does not occurs suddenly. In case of model (2) If cracks happen it means the depth of
the crack equals half of the depth of the beam only and the failure does not exist. This case looks logical and
close to the experimental behavior of the reinforced concrete beams. Therefore, in case of model (3) the depth
of the first crack equals 1/3 of the total depth of the beam. In this case the development of the cracks is not
similar to the experimental behavior of the beam. That is why we find that the numerical results are very
close to the experimental results in case of model (2). So, it is preferable to use model (2) to implement the
Modified Lattice Model.

Fig. 6 Comparison With Experiment (NO. 4)

The change of the thickness of the arch element are drawn in Fig. 7 and Fig. 8 for the beams of
No.2 and No. 5 in Table 1 respectively during the calculations. The thickenss of the arch element is
increasing gradually from the elastic stage, in which it remains constant , up to the complete failure of the
beam. After the yielding point, the depth of the arch element is decreased due to the initiation of the cracks.
So, the thickness of the arch element has increased gradually trying to continue the effect of the arch element
up to the failure point. As have been discussed above, most appropriate truss discretization is model (2). This
suggest that the probable arch width is between 0.4b in the early loading stage and increase with the load up
to 0.7b.
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S. APPLICATION OF THE MODIFIED LATTICE MODEL TO BEAMS WITHOUT
WEB REINFORCEMENT

To examine the applicability of the Modified Lattice Model for concrete beams without web
reinforcement numerical calculation is performed using the preferred model in Fig.4(b). The governing
equation to calculate the shear strength of concrete beam without web reinforcement, is represented by
Equation (4) which has been accepted by the Standard Specification of JSCE ®), Here we will use Equation
(4) to examine our Modified Model.

V,(MPa)= 020 f:“Pw‘“d-°-25[o.7s . 1}2] @
a

where, f_ is the compressive strength of concrete (MPa), P, is the reinforcement ratio (=100 4, / (b,,d), d is
the effective depth of a concrete beam (m), a/d is the shear span-effective depth ratio. To examine the
applicability of the suggested Modified Lattice Model for concrete beams without web reinforcement, the
comparisons are carried out using equation (4) and also with the normal Lattice Model. Fig. 9 shows the
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Fig. 9 The Change of Shear Carrying Capacity
With Variation of Each Parameter
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change of ratio of the results of predicted shear carrying capacity between the normal Lattice Model,
Modified Lattice Model and equation (4) with the variation of different parameters. The parameters which
are selected and combined were concrete strength, reinforcement ratio, effective depth and shear span-depth
ratio. As seen from Fig.9, the predicted shear carrying capacity by the normal Lattice Model is smaller than
that by equation (4), but the variation for the Modified Lattice Model is much smaller and admissible. Also
from this figure the tendency of the prediction by the Modified Lattice Model is not necessarily similar to
equation (4). The ratio is varied from 0.96 to 1.03, but in case of normal Lattice Model the ratio is almost
from 0.88 to 1.1 "', Predicted shear failure mode by the Modified Lattice Model is the failure of the diagonal
tension member which is corresponding experimental results. Consequently, it can be considered that the
prediction of the shear carrying capacity by the modified lattice model is adequate.

6. CONCLUSIONS

In the newly developed Modified Lattice Model, a concrete beam subjected to shear force is converted into a
simple truss and arch members by the consideration of the minimum total potential energy for the structure at
each step of calculation. A non-linear incremental analysis is performed. Conclusions obtained from this
research are as follows:

1. By minimizing the total potential energy of the reinforced concrete beam we get only one value for the
thickness of the arch element, at which we get the stiffest case for the structure which is quite similar to
the original response of the experimental analysis

2. The thickness of the arch member which plays a very important role in the Modified Lattice Model is
increases gradually with the increase of displacement of the loading point after the initiation of diagonal
cracks up to the complete failure of the beam.

3. The applicability of the modified lattice model is examined for beams with web reinforcement. It gives a
quite close results when compared with the experimental results. Also, in case of beams without web
reinforcement for deferent parametric conditions, the tendency of the prediction of strength by the
Modified Lattice Model is very close to the equation of JSCE.

REFERENCES

1. Architectural Institute of Japan.(1990) Design guidelines for earthquake resistant reinforced concrete
buildings based on ultimate strength concept, Tokyo, Japan. (in Japanese)

2. Comite Euro-International du Beton. 1978 CEPP-FIP model code, Lausanne, Switzerland.

3. Clark, A.P.: Diagonal Tension in Reinforced Concrete Beams, ACI Journal, pp.507~515, 1989.

4. Fawzy M. EL-Behairy, Niwa, J. and Tanabe, T. “Analytical study on pure torsion behavior of concrete
columns using 3D-Lattice model.” Proc.JCI.VOL.18.No.2. 1996. pp. 263-268.

5. Fawzy M. El-Behairy, Niwa, J. and Tanabe, T. “Simulation of the R.C. column behavior in 3Dstress state
under pure torsion using 3D-lattice model.” Proc. Of JCI Transaction, Submitted by November, 1996, to
appear.

6. Koichi Minami “Limit Analysis of Shear in Reinforced Concrete Members” Proc. Of JCI Colloquium on
Shear Analysis of RC Structures, June 1982.

7. Niwa, J., Choi, I. C., and Tanabe, T. :Analytical Study for Shear Resisting Mechanism Using Lattice
Model, JCI International Workshop on Shear in Concrete Structures, pp.130~145, 20, June, 1994.

8. Niwa, J., Yamadak., Yokozawak.,& Okamura,H.”Revaluation of the Equation for Shear Strength of
Reinforced Concrete Beams without Web Reinforcement”, Proc. Of JSCE, No.372/V-5, pp.167~176,
1986 (in Japanese).

9. Ichinose, K. Hanya” Three Dimensional Shear Failure of RC Columns” Concrete Under Sever
Conditions Environment and loading (Volume Two) Edited by K. Sakai puplished in 1995.pp.
1737~1747.

— 482 —



