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"X Simplified Nonlinear Analysis of RC Members with
consideration of Pullout Effect

Shahid NASIR', Supratic GUPTA? and Hidetaka UMEHARA’

ABSTRACT: The calculated load-displacement behavior generally showed stiffer behavior as
compared to the experimental results in the pre-peak part. The pullout of reinforcement has been
found as the main reason for this phenomenon. Reinforcement behaves differently when embedded
in concrete as compared to their behavior when it is tested as a bare bar. A developed simplified
analytical tool for the RC member is used to understand this effect. A theoretical approach of
decreased modulus of elasticity of reinforcement was applied and the behavior of the experiments
was calculated under monotonic and cyclic loading. Good similarity has been observed between
experimental and analytical results.
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1. INTRODUCTION

Due to recent major earthquake disasters the prediction of the behavior of reinforced concrete
members is a hot topic of the research. Various researchers are trying to formulate more
sophisticated analytical tools for more accurate simulation of different structural phenomenon.

A simplified analytical tool, based on finite difference method, is developed to analyze the
reinforced concrete members under cyclic loading. Displacement-controlled algorithm is
implemented with detailed cyclic material behavior. This tool is used successfully for calculating
the load-displacement behavior of RC members under monotonic as well as cyclic loading. Similar
to other analytical tools, member behavior that is calculated by using this method, showed
comparatively stiffer behavior than experimental results in the pre-peak of the load-displacement
curve.

This is due to pullout of reinforcement and mostly this phenomenon is common in the bridge
piers, footing of the columns and the exterior beam-column joints. In case of the cyclic loading, the
occurrence of the pullout of the reinforcement increases the hysteretic energy and also effects the
unloading and reloading branches. For retrofit strategies of the earthquake disasters, the
displacement corresponding to the load is important for defining the level of disaster. Hence it is
important to work out the pullout of reinforcement in order to improve the analytical results.

Researchers generally measure the additional deformation due to the pullout of the
reinforcement by displacement gauges attached at the beam column joint. The addition of this
deformation in the analytical displacement gives the actual displacement. The accuracy of such data
is quite difficult to maintain during the cyclic loading and also the analytical tools need proper
implementation of this phenomenon. Shima et al[1] and Ishibashi et al[2] have proposed an
empirical equation with bar diameter and clear distance among the main bars as the parameter for
the calculation of the pullout displacement. The pullout displacement calculated by the empirical
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equations is quite conservative and needs further attention. The measured strain on the main bar at
the column footing joint was also being used for calculating the pullout. The pullout displacement
calculated from the strain in the main bar underestimates this behavior. It is obvious that the bar slip
is involved in the pullout phenomena and its consideration is necessary in the calculation of the
member behavior.

It is well known that the behavior of the reinforced concrete members under cyclic loading
depends on the hysteretic behavior of the material and on several factors related to the interaction
between reinforcing bar and concrete. Generally, the analysis of the reinforced concrete members is
performed with perfect bond between steel and concrete. This assumption is true for low level of
loads but as load increases the bond deterioration starts and the bar slip occurs. This leads to an
additional displacement other than the deformation and generally refers as pullout of reinforcement.

In this paper, the simplified formulation is presented briefly with materials model. The
pullout of the reinforcement is studied with the consideration of bond slip behavior in the material
model of steel. A numerical test result of the effect of different degree of bond between concrete
and steel on the material model of steel has been taken from Monti et al[3] and applied for the
calculation of different experimental results using the simplified analytical method. The two RC
specimens with and without axial load are simulated for monotonic and cyclic loading cases and
this type of approach is found quite promising in improving the analytical results though the more
concrete work is needed to understand the effect of bond characteristic on the steel material model.

2. THE SIMPLIFIED FORMULATION

This formulation is based on relatively simple method of finite difference. The following are
the assumptions for the formulations:
1. Plane section remains plane before and after bending
2. Concrete is homogeneous isotropic material
3. Deformation due to shear is neglected
4. There is no secondary moment in the column (P-A effect)

A reinforced concrete cantilever column of height L and cross-section dimensions of b and A
is taken to present the analytical tool. In the analytical model, the column is divided into n elements
with n+1 nodes as shown in Fig.1a. The cross-section is divided into m number of strips of
thickness dh each. Lateral load P and varying axial load P, are applied at the top of the column.
This varying axial load is taken as input from the experimental observations. Nodal variables of
displacement y;, rotation 6, curvature ¢; and strain at the top of the section ¢, at " node are
considered. Strain at the j* strip of the cross-section can be defined as
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Fig.1: Analytical Model
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where y; =x, —z; and each strip of the section is further subdivided into parts of area Ajm

according to the different material properties. These areas are core concrete, cover concrete and
reinforcement. Stress o, is calculated for each of these areas based on their material

characteristics. /; is the distance from the point of application of load P to the i node. The internal

axial force P, and the external and internal bending moment, M, -

y and M, at the nodes can be

calculated as:

P.=)No.A 2)
ax 177
2
M,y =1,P (3a)
M, = 2‘7/‘4121‘ (3b)
J

Using above equations we can get the following equation
OM; = (M | 3);6¢; + (oM | oF,,); OF,,, )
In the above equation, (dM /dF,,); F,,; is the component due to varying axial load during the

experiment. The nodal variables of displacement y, rotation 6 and curvature ¢ between two
consecutive nodes in the incremental form are assumed to be related to each other as follows,

;1 -0y, -(66,,, +06,)Al2=0 ®)
86,1 - 66, - (6¢;,, +6¢;)Al/2=0 (6)

Here Al=1[; -1, ;. The stiffness matrix in the incremental form can be constructed using

Eq.(4), (5) and (6). There are n +1 variables of displacement Jy;, rotation 86; and curvature d¢; at
each node. The applied cyclic load 6P is taken as a global variable. Thus there are n+1 equations
from Eq.(4) and » equations each from Eq.(5) and Eq.(6). This Eq.(4) will not be relevant at the
n+1" node because of the boundary conditions of 6¢,.,=0 and /,,,=0. Therefore 3n equations have
been taken with 3n +4 unknowns with 4 boundary conditions (at the support dy, =0, 86, = 0 and at

the top 6¢,,, =0, applied dy,,, ) and hence system of equations can be solved. In spite of stiffness
matrix being unsymmetrical, there was no problem in the solution is noted[4].

The solution of stiffness matrix gives the nodal variables of displacement y;, rotation 6;, and
the curvature ¢. At each node, based on the calculated curvature ¢, strain at the top of the section &

is calculated in an iterative manner such that external axial force balances the internal axial force of
Eq.(2). The top strain in the section is taken as convergence criteria for the moment curvature
relationship calculations. The global convergence at

each node is checked after convergence of the £

internal forces. The difference between moment due o
to internal forces and moment due to applied lateral
force is taken as the criteria for global convergence.
The unbalanced moment is iterated to get the
converged moment.

] (&n:fy) (& /,!,) (&2 fy2)

3. MATERIAL MODELS S
(1) Material model for reinforcement

The cyclic stress-strain  model for
reinforcement adopted in the analysis is presented in
Fig.2. This is a multi-linear model that deals with
one-dimensional stress-strain relationship for steel. Fig.2: Reinforcing steel stress-strain model

Envelope
Unloading/Reloading case
Ref. Line in Tension
e Ref. Line in Compression
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More details can be found in Nasir et al[4]. 8

Here, ¢,,=0.007, ¢,,=0.05, f, =-f,, °
E,=2.1x10°MPa, and E,,=m,E, where m;=0.05 for S
specimen and m,;=0.1 for T specimen and has been
adopted by trial error method in order to match with
experimental results.

Confined
= == Unconfined

Strain

(2) Material model for concrete

The stress-strain envelope curve for concrete
is taken parabolic until peak and bilinear softening
is taken as shown in Fig.3 and more details can be £

found in Nasir et al[4]. Here €,,=0.002, is the strain Mare cases of Beloading end
cl) Unloading

at the peak stress f, and strain ¢, is the controlling

parameter for the softening slope of the stress-strain Fig.3: Concrete stress-strain model

curve. The values of i are taken as 1 for unconfined
concrete and 2 for confined concrete. This factor ¢, physically depends on the tie spacing, number

of ties and the strength of concrete. In tension, linear behavior until peak and gradual degradation in
the post-peak range is adopted.

The accumulated plastic strain during cyclic loading &, is calculated by focal point model for
better numerical convergence[4]. It is taken as the ordinate of intersection of strain axis with line
joining from the unloading point at the compression envelope curve, to the point (- f.//E. - f.")

and is shown in Fig.3.

4. SIMULATION OF EXPERIMENTS

Two different experiments have been considered. Both are cantilever reinforced concrete
columns with lateral load applied at the top of the specimen.

Specimen T is without axial load and specimen S is with axial load. More details of the
specimens are presented in Table 1. In specimen T, one cycle of each displacement magnitude was
applied and in specimen S, three cycles of each displacement magnitude had been applied at the top
of the column. The pullout of reinforcement is measured but the data was not so reliable and is not
presented here.

.
Table 1: Details of specimens
Seecimen Height Cross Axial load | Concrete f.’| Steel f, | Steel f,. Main
P L(cm) |Section(cm)| N/mm? N/mm? | N/mm? | N/mm? | Reinforcement
L
163 30x 15 0.0 22 420 -420 8 D10
S 260 45x 30 1.85 28.7 420 -420 20 D13
15 30
«—> —
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(a) T Specimen section (b) S Specimen section (c) Specimen

Fig.4: Specimen and cross-section details
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5. PULLOUT OF REINFORCEMENT

-0
»
>

q,=(0.21).(100-D) MPa
u;=(0.04).(1+ D)=0.7mm

ey

The observation of most of the analytical result in
comparison of the experimental results showed stiffer
behavior in the initial stage. This is due to the pullout
effect of the reinforcement, which is due to the bond slip
between the reinforcement and the surrounding concrete.
Hence the stress-strain relation of a bare bar, which uy=3.u; fuy= 10u;
dprmg testing was 1deall_y _grlpped at th.e ends, showed u, u, Slp(mm) u, 5
different behavior when it is embedded in concrete. The ’
application of the standard anchorage to the bars also Fig.5: Bond slip constitutive law with
couldn’t prevent the bar slip. Hence, the bond slip is  parameter based on bar diameter, D[3]
important and it is needed to consider the effect of bar

2

q=1/2.9;

Bond stress (MPa)

‘ q;=1/3.q,

[ta]
o

slip on the material model. )
Monti et al[3] has presented the bond slip 400 ;

formulation for the beam element with the effect of bond 300 4 P e Full bond

slip for FE formulation, based on flexibility method. A 7 f ) _o. ~— Nomalhond

numerical test using this formulation on a steel bar 2 5| /7 '\ 77 Weakbond

anchored on 20 diameters was performed to study the £ A K

effect of the bond slip on the stress-strain behavior of * 1001 /4’ e e s

steel. It is necessary to mention here that the effect of /

bond slip on the stress-strain behavior is purely a ' j j ' —>
0.0 0.002 0.004 0.006 0.008 0.01

theoretical and taken here from the reference[3] though it

shows the probable effect of slip on the bar behavior. .
Fig.5 shows the bond stress to bar slip relation and Fig.6: The stress-strain of Steel
corresponding constitutive law with diameter of the bar (anchorage length=20D)

as parameter.

The effect of the beam element formulation with bond slip consideration (Fig.5), on the
material behavior of steel is shown in Fig.6[3]. In the numerical test, three degrees of bonds are
considered. 'Full bond' refers to the steel stress-strain relationship when tested as bare bar. 'Normal'
and 'Weak bond' refers to the steel stress-strain relationship when it is numerically tested with
consideration of the bond slip constitutive law as mentioned in Fig.5. Normal bond case is selected
when the steel bar yields before the bond reaches the plateau (represented by ql in Fig.5) whereas
weak bond refers to the case where bond breaks and starts softening before the steel reaches the
yielding point. The case of weak bond arises if enough anchorage length is not provided. The
specimens considered here were properly detailed and hence the case of the weak bond will not be
discussed here. In full bond, modulus of elasticity Es is taken 100% whereas considering normal
bond in Fig.5, E; of steel showed 33% reduction as compared to full bond[3]. For cyclic loading,
the same reduction in E; (67%E;) as in the monotonic loading case has been adopted. Hence, the
slopes of reloading/unloading lines, which are the parameter of E;, have been changed accordingly.
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(a) Specimen S (b) Specimen T

Fig.7: Reinforcement model for steel with consideration of pull out effect of steel
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Fig.8: Reinforcement model for steel with consideration of pull out effect of steel

Cyclic loading cases need to be studied more critically as there might be a point in the stress-strain
history when the anchorage slippage occurs in cyclic loading.

The experimental load-displacement envelope curve is compared with the monotonic
analytical results with full and normal bonds and presented in Fig.7. As expected, the monotonic
analytical results with full bond showed the stiffer behavior in the pre-peak part whereas the
application of the normal bond between the concrete and steel gave almost the similar behavior in
experimental and analytical results in both S and T specimens with a little lower peak load in the
case of specimen T. For the case of specimen T, without axial load, cyclic behavior is calculated
based on the full bond and normal bond as shown in Fig.8(a) and 8(b) respectively. The normal
bond case gave good matching in the initial stages and also in the loading and unloading branches
of the hysteric curve. The case of specimen with axial load (specimen S) is having some
convergence problem and need further attention.

6. CONCLUSIONS

A simple method for analysis of reinforced concrete members based on finite difference
method has been used for the analysis of RC members. In this paper, the pullout of reinforcement is
discussed using a simplified formulation. The stiffer analytical result in the pre peak part of the
load-displacement behavior is taken care by considering the bond slip between the concrete and
steel bar. This is a theoretical approach([3] just to understand the effect of the bond slip on the load-
displacement behavior of the member.

The experimental results with and without axial load are simulated. The following conclusions can

be made:

L. The simulation of the experimental behavior with consideration of the bond slip has given good
matching between the analytical results under monotonic loading with the experimental envelope
curve especially in the pre peak part of the load-displacement curve.

2. The application of simple bond slip for the cyclic loading simulation gives good matching in the
case of specimen without axial load. The specimens with axial load are still under consideration.
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