論文 発錆した溶接金網用鉄線のコンクリート中での腐食進展と付着挙動

上田 隆雄*1・小林 孝一*2・山本 尚*3・宮川 豊章*4

要旨:本研究では,施工現場において雨水等の影響で発錆した溶接金網をコンクリート中に 埋め込んだ場合を想定し,打設後のコンクリート中における鉄線の腐食進行,および,発錆 した鉄線とコンクリートとの付着に関して実験的検討を行った。この結果,コンクリートの 含有塩分量が土木学会コンクリート標準示方書に示された許容値以下であれば,施工後の鉄 線腐食進展は見られず,セメントの水和反応進行に伴って鉄線防食環境が形成された。付着 に関しても,本研究で想定した程度の腐食レベルにおいては,鉄線腐食による付着強度の低 下や曲げ部材のひび割れ分散性への悪影響は見られなかった。

キーワード:溶接金網用鉄線,鉄線腐食,自然電位,付着強度,ひび割れ分散性

1. はじめに

一般に健全な鉄筋コンクリート部材中の鋼材 は,コンクリートのアルカリ性によって形成さ れる不動態被膜によって腐食から保護されてい る。これにより,適切に設計・施工されたコン クリート構造は耐久性に優れた合理的な構造形 式であると言える。

一方,施工現場においては使用前の鋼材は大 気中に曝されることが多く,型枠内に設置され る時点,あるいはコンクリートが打設される以 前の時点において,雨水等の影響で発錆してい ることもある。このような打設前の鋼材腐食が 鉄筋コンクリートの耐久性や耐荷性に与える影 響については明らかでない点が多い。

したがって本研究では,コンクリート打設前 に既に腐食が生じた鋼材を用いた鉄筋コンクリ ートについて,施工完了後の鋼材腐食の進展, および鋼材腐食が鋼材とコンクリートとの付着 挙動に与える影響を明らかにすることを目的と した。なお,本研究では鋼材として溶接金網用 鉄線を対象とした。溶接金網は,鉄線を格子状 に溶接し,コンクリートの補強材として用いら れるものであり,高い引張強度と細い線径を生かして,スラブ,壁部材,トンネル,ヒューム 管などのコンクリート補強材として多くの施工 実績を有している。

2. 実験概要

2.1 供試体の作製

本研究では,所定のレベルまで腐食した溶接 金網用鉄線 SWM-P (JIS G 3532)を用いて, 腐食進行測定用,片引試験用と曲げ載荷試験用 の3種類の鉄筋コンクリート供試体を作製した。

腐食進行測定用供試体の寸法は 100×100×300 mm であり,長さ 200 mm で端に自然電位測定 用の被覆つき電気コードをハンダ付けした鉄線 2 本をかぶり 30 mm,20 mm および 10 mm で配 置した(図-1参照)。

片引試験用供試体は 100×100×100 mm の立方 体コンクリートの中央に鉄線を1本配した。鉄 線長さは 800 mm とし,この内自由端として 10 mm 出した上でコンクリート中に 100 mm 埋込 むこととした。ただし,付着長は 80 mm とし, コンクリート中残りの 20 mm は非付着部分と

- *1 徳島大学助教授 工学部建設工学科 工博 (正会員)
- *2 中部大学講師 工学部土木工学科 工博 (正会員)
- *3 日本溶接金網協会技術委員長
- *4 京都大学大学院教授 工学研究科土木工学専攻 工博 (正会員)

新者	W/B	Sg/B	s/a	単位量 (kg/m ³)						
「生犬只	(%)	(%)	(%)	W	C	Sg	S	G	AE 減水剤	NaCl
腐食進展測定用	70	30	45.9	175	175	75	840	1002	0.625	0.494
	55	30	45.8	175	223	96	811	972	0.796	0.494
片引 , 曲げ試験用	55	0	45.8	175	318	0	810	972	0.796	0

表 - 1 コンクリート示方配合

表-2 溶接金網用鉄線の性質

0.2%耐力	引張強度	伸び	化学成分(wt.%)				
(N/mm^2)	(N/mm^2)	(%)	С	Si	Mn	Р	S
547	585	20.7	0.06	0.26	0.30	0.027	0.008

した(図 - 2参照)。また,鉄線形状として直線 状のもの(図 - 2左)と,引抜きに抵抗する横 線を有する十字架状のもの(図 - 2右)の2種 類用意した。

曲げ試験用供試体は 150×150×1000 mm のR Cはりとし,かぶり 25 mm の位置に 100 mm メ ッシュの溶接金網を配した(図-3参照)。主筋 となる軸方向鉄線は2本とし,横線は重ね継手 でスターラップ状に成形した(図-3上)。なお, 鉄線腐食による付着の変化に起因するひび割れ 性状の違いを明確にするために、曲げスパンに 対応する部分のみ横線を除去した供試体(図-3下)も併せて作製した。

供試体作製に用いたコンクリートの示方配合 を表 - 1に示す。腐食進展測定用供試体のコン クリートは,水結合材比70%および55%とした。 このうち,70%のものはJCI-SC3¹⁾にしたがい, 普通ポルトランドセメントの30%を高炉スラ グ微粉末(比表面積:4280 cm²/g,密度:2.88 g/cm³)で置換した。また,土木学会コンクリー ト標準示方書[施工編]で定められた塩分量の上 限値(Cl⁻:0.3 kg/m³)に相当するCl⁻を練混ぜ 時にNaClの形で外割り添加した。片引,曲げ 試験用供試体のコンクリートは水セメント比 55%で一定とし,高炉スラグ微粉末およびCl⁻ の添加は行わなかった。用いた鉄線の物理的性 質および化学的性質を表 - 2に示す。

2.2 試験方法

最初に試験の対象となる鉄線に対して所定の レベルまで腐食を促進させた。ただし,腐食部

図 - 1 腐食進展測定用供試体

図 - 2 片引試験用供試体

分はコンクリート中に埋め込む部分と,引張試 験用鉄線(全長1m)の中央部分200mmに限 定した。本研究では,鉄線の腐食グレードとし て以下に示す4レベルを設定した。

グレード0:腐食を生じていない製造時状態。

- グレード1:1回散水後5日経過時点の軽微な 点錆程度の腐食状態。
- グレード2:9日間で2回散水+2週間の屋外 暴露により面錆が顕著な腐食状態。
- グレード3:12日間で3回散水+3週間の屋 外暴露による全面腐食状態。

所定のレベルまで腐食させた鉄線を用いて, 各種供試体を作製するとともに,鉄線の引張試 験を行った。引張試験の測定項目は,引張荷重, 鉄線ひずみと伸び(標点間距離:JIS G 3532 に より5 =30 mm)とした。

腐食進展測定用供試体は,材齢5日まで封か ん養生を行なった後,かぶり面以外はエポキシ 樹脂にて被覆(図-1太線部分)し,かぶり面 以外から酸素や水分が供給されるのを防いだ。 材齢7日の時点でコンクリート中に埋設された 鉄線の自然電位を測定し,その後直ちに供試体 を乾湿繰返し条件(40,RH95%以上の湿潤期 間3日と室温気乾状態3日で1サイクル)に置 いた。その後は2サイクル終了ごとに鉄線の自 然電位をJSCE-E 601-2000「コンクリート構造物 における自然電位測定方法」にしたがって測定 した。照合電極は飽和銀/塩化銀電極を用いた。

片引試験および曲げ試験用供試体は脱型後 28日間の湿布養生の後に載荷試験を行った。片 引試験においては,自由端変位と引抜荷重を, 曲げ試験においては,荷重,スパン中央変位と,

型ゲージを用いて曲げスパンのひび割れ幅を 2.5 mm まで測定した。データはすべてデータロ ガーを通してパソコンに取込み,分析を行った。

3. 鉄線引張試験

各腐食グレードの鉄線を用いて引張試験を行った。試験結果を表 - 3 に示す。なお,ここで 示す値はすべて3体の供試体から得られた測定

表 - 3 鉄線引張試験結果

グレード	引張強度(N/mm ²)	伸び(%)
0	602	20.5
1	611	21.0
2	619	22.5
3	621	19.0

図 - 4 鉄線の応力 - ひずみ曲線

値の平均であり,引張強度の算定には健全時の 断面積を用いた。これによると,引張強度と伸 びに関して鉄線腐食の影響はほとんど見られず, この程度の腐食であれば鉄線自身の強度低下や 伸び能力低下は実用上問題とならないと言える。

引張試験片に貼り付けた塑性ひずみゲージを 用いて測定された,応力-ひずみ曲線を図-4 に示す。図-4は鉄線ひずみ5%までの応力-ひずみ曲線を示しているが,弾性域,塑性域の いずれについても鉄線腐食による影響はほとん ど見られず,この点からも鉄線自身の腐食によ る力学的物性変化は小さいことがわかる。

4. コンクリート中における鉄線腐食の進展 腐食進展測定用供試体中の鉄線自然電位の経 時変化を図 - 5 に示す。ここで示す結果は,同 一要因の供試体2体,すなわち鋼材4本の平均 値である。また,図中の点線はASTMで規定さ れた腐食状況判定基準²⁾を示している。

図-5によると,供試体作製前の鋼材の腐食 レベルにかかわらず,いずれの供試体において

も腐食促進サイクル数が大きくなるにともない, 自然電位は貴な方向に変化している。したがっ て,供試体中の鉄線腐食が進行している可能性 は徐々に小さくなっており,本研究のようにコ ンクリートが健全な場合には,あらかじめ鋼材 に腐食が生じていても,鋼材はかぶりコンクリ ートによって保護され,鋼材表面には不働態被 膜が形成されることにより,コンクリート打設 後の腐食進展は妨げられるものと考えられる。

また,一般にかぶりが大きいほど,さらに, 水セメント比が小さいほど,コンクリート中の 鋼材において腐食が進行する速度は小さくなる。 これは腐食反応のうちカソード反応によって消 費される酸素と水分の供給量が抑制されるため であるが,図-5によると,かぶりや水セメン ト比の違いによる顕著な影響は見られない。これは,本研究の場合には,コンクリートの含有 Cl⁻量が微量であったため,いずれの配合,か ぶりの条件においても Cl⁻による鉄線表面の不 働態被膜破壊が生じなかったためと考えられる。

20 サイクルの腐食促進終了後に,コンクリー トから鉄線をはつりだし,コンクリート中に埋 め込む前の鉄線腐食状況と目視により比較を行 ったところ,自然電位の測定結果から推測され たように,コンクリート中における鉄線腐食の 進展は,ほとんど確認されなかった。

5. 片引試験

片引試験の結果得られた,引抜き荷重-自由 端変位曲線を図-6に,最大引抜き荷重に対し

図-6 引抜き荷重-自由端変位曲線

図 - 7 最大荷重比と腐食グレードの関係

て,腐食グレードのの場合を1とした最大荷重 比と腐食グレードの関係を図-7に示す。なお, 供試体は各要因に対して3体ずつとし,十字架 状の鉄線を用いた供試体は腐食グレード0と2 の場合のみ作製した。これらの図より,鉄線形 状が直線状の場合,腐食程度が大きい方が最大 荷重が大きくなっていることがわかる。腐食の ない鉄線は表面が滑らかでコンクリートとの付 着強度の絶対値が小さく,ばらつきも大きい。 このため,腐食グレード0と1の場合の最大荷 重比に工学的有意差は無いと考えられる。これ に対して,腐食した鉄線の表面は腐食生成物に より凹凸が生じることにより,コンクリートと の噛み合い効果が増大した³⁾ことで鉄線とコン

表-4 はりの曲げ載荷試験結果一覧

グレ ード	横線	ひび割れ 発生荷重 (kN)	最大荷重 (kN)	ひび割 れ本数 (本)
0	無し	14.3	34.8	1
		14.4	33.8	2
	有り	15.7	37.3	5
		18.6	37.9	4
2	無し	23.0	38.7	3
		21.5	37.4	4
	有り	19.1	37.9	5
		20.1	39.0	4

クリートとの付着強度が増大したものと考えら れる。いずれの場合も,引抜き荷重が最大値を とった後は急激に荷重が低下し,コンクリート と鉄線の摩擦力が支配する引抜け挙動を示した。

鉄線形状が十字架状の場合は,引抜き方向に 直交する鉄線が引抜き力に抵抗するため,最大 荷重は直線状鉄線の場合と比較して大幅に増大 している。この場合,腐食による付着強度増大 効果よりも横線による機械的抵抗効果の方が卓 越するために,腐食グレードが0の場合と2の 場合の差はほとんど見られない。溶接金網とし て鉄線を用いる場合には,横線による機械的抵 抗が期待できるため,鉄線腐食が付着強度に与 える影響はほとんど無いものと考えられる。ま た,溶接部の腐食の影響も見られなかった。

6. はりの静的曲げ載荷試験

腐食グレード0と腐食グレード2の鉄線を用 いて作製したRCはり供試体(各要因2体ずつ) の静的曲げ載荷試験を行った。これより得られ た曲げひび割れ発生荷重,最大荷重と,載荷終 了時のひび割れ本数の一覧を表-4に,ひび割 れ幅2.5 mmまでの荷重-最大ひび割れ幅曲線 を図-8に示す。なお,破壊形式はいずれも上 縁コンクリート圧壊による曲げ破壊であった。 表-4より,腐食グレードが0の場合と2の場 合を比較すると,曲げひび割れ発生荷重,最大 荷重ともに腐食グレード2の場合の方が若干大 きな値となっている。このような傾向は特に曲

図 - 8 荷重 - 最大ひび割れ幅曲線

げスパンに横線が入っていない場合に顕著に見 られる。また,ひび割れ本数は腐食グレード2 の場合の方が多く,5.に示した腐食に伴う付着 強度の増加により曲げひび割れ分散性が向上し ていることがわかる。図-8によると,腐食グ レード2の場合には,同一荷重レベルの腐食グ レード0の場合と比較して最大ひび割れ幅が抑 制されていることがわかる。これはひび割れ分 散性の向上によりひび割れ幅が抑制されたため であると考えられる。これにより,腐食グレー ド2の場合の方が中立軸位置が低くなり,上縁 コンクリート圧縮部が確保されやすかったため, 表-4に示したように最大荷重が若干増加した ものと考えられる。

7. まとめ

本研究の結果をまとめると以下の通りである。

- (1) 腐食した鉄線の引張試験より,今回採用した腐食程度であれば引張強度,伸び,降伏強度,弾性係数の力学的物性値が低下することはなかった。
- (2) Cl⁻濃度 0.3 kg/m³以下の健全なコンクリートであれば、コンクリート打設前に鉄線に腐食が生じていても、コンクリート中における鉄線の腐食進展は見られなかった。このような傾向は、かぶりや水セメント比が異なる場合も同様であった。また、コンクリートの材

齢や腐食促進サイクル数が大きくなるにつれ、セメントの水和進行により、むしろコン
クリート中の鉄線腐食傾向は小さくなった。

- (3) 腐食鉄線を用いた片引試験より,直線状の 鉄線を用いた場合には腐食に起因する鉄線 粗面の形成により付着強度の増大が見られ た。ただし,引抜き方向に直交する鉄線が存 在する場合には,直交鉄線による影響が卓越 し,腐食による顕著な影響は見られなかった。 また,溶接部の腐食の影響も見られなかった。
- (4) 腐食した鉄線を用いたRCはりの静的曲げ 載荷試験を行った結果,鉄線の腐食に起因す る付着強度の増大により,ひび割れ分散性が 向上した。このような傾向は曲げスパンに横 線を配さない場合に特に顕著に見られた。

以上より,本検討の範囲ではコンクリート打 設前の鉄線腐食が,打設後の耐久性やコンクリ ートとの付着に与える悪影響は小さいものと思 われ,特に溶接金網の形状で用いる場合には格 子効果による機械的付着効果が期待できること から,腐食の影響は非常に小さいものと考えら れる。ただし,大幅な断面欠損を伴うような腐 食は当然避けるべきであり,現場等における配 慮が必要であると言える。

謝辞:本研究を遂行するにあたり,京都大学大 学院 服部篤史助教授,住倉鋼材㈱ 黒川健次 氏からご指導,ご協力をいただいたことを記し て,ここに謝意を表します。

参考文献

- 日本コンクリート工学協会:コンクリート 構造物の腐食・防食に関する試験方法なら びに規準(案),1991.4
- ASTM C876-91: Standard Test Method for Half-Cell Potentials of Uncoated Steel in Concrete, 1999.
- 3) 日本コンクリート工学協会:コンクリート 構造物のリハビリテーション研究委員会報 告書,1998.10