論文 帯鉄筋を有しないモルタル柱の破壊性状に関する基礎的研究

宮川 邦彦*1

要旨:耐震設計上,重要なRC柱の破壊性状や耐力算定式には,まだ解明すべき問題点が残 されている。特に構造物の崩壊原因に繋がるせん断破壊のうち,軸圧縮力の持続の有無が水 平載荷時のコンクリート断面の分担せん断耐力に及ぼす影響を調べた研究は少ない。本研究 では,細径の軸方向鉄筋を配置した小型モルタル柱を作製し,軸圧縮力の持続の有無が水平 載荷時の破壊性状に及ぼす影響を検討した。その結果,軸圧縮力を持続載荷した柱部材のせ ん断耐力が,直前載荷した柱部材のそれと比較して,2~4割低減すること,軸圧縮力の大 きさや軸方向鉄筋量に関係なく,ほぼ一定になること等の知見を得た。 **キーワード**:せん断耐力,寸法効果,乾燥収縮,クリープ,斜め引張破壊

1. はじめに

兵庫県南部地震をはじめ, トルコや台湾でも マグニチュード7以上の大地震が発生し、人 的・物的両面で甚大な被害をもたらした。特に 兵庫県南部地震では、新幹線や高速道路の橋脚 が崩壊し、都市機能を完全に麻痺させる原因と なった。同地震以後、わが国の土木分野でも柱 部材の破壊性状に関する研究が活発に行われ、 その成果を基に平成8年度に土木学会「コンク リート標準示方書」や日本道路協会「道路橋示 | 方書 | の耐震設計編が改訂され、地震のタイプ や部材の破壊形式などでその設計法が細分化さ れた^{1), 2)}。しかしながら,両設計法共,せん断 耐力の算定式には、従前と同様、軸圧縮力を受 けないはり部材の実測結果に基づく経験式が適 用されており,同式が持続軸圧縮力を受ける柱 部材にも適用可能か否か、まだ十分に立証され ていないのが現状である。

柱部材は,はり部材とは異なり,常時ある程 度の軸圧縮力を受ける。特に都心部の乾燥環境 下で,しかも土地の有効利用や立地条件の制約 等のために断面寸法が制限される独立橋脚,あ るいはラーメン橋脚等では,軸方向鉄筋や帯鉄 筋が増し,施工性の面で問題視されているが, それだけではなく,コンクリートの乾燥収縮や クリープを増大させる要因にもなっている。特 にこのような状況下にある柱部材の場合,コン クリート断面の圧縮応力度が減少し,軸方向鉄 筋のそれが大幅に増大する。この応力移行現象 は、地震力が作用したとき、コンクリート断面 で分担できるせん断耐力を低下させ、軸方向鉄 筋の座屈を助長させる要因になることを指摘し たが^{3),4)},現時点では、コンクリートの時間依 存現象が柱部材の破壊性状に及ぼす影響を検討 した研究は少なく、その影響度を定量化して算 定式を確立するためには、基礎資料となる実験 データが不足している。

そこで本研究では、軸圧縮力の持続の有無が 柱部材のせん断耐力に及ぼす影響、特にその基 礎資料となる帯鉄筋を有しない柱部材の分担せ ん断耐力を調べた。本来、実構造物に近い大型 部材で実験すべきであるが、はり部材でも指摘 されているように、せん断破壊機構が複雑で、 検討すべき項目が多く、大型部材では、その作 製や装置および経費等の面で困難である。そこ で本研究では、実構造物との相似性、すなわち、 小型部材で実験する際のせん断耐力に及ぼす軸 方向鉄筋径や骨材粒子のインターロッキング効 果の影響を勘案して、細径の軸方向鉄筋を配置 した小型の鉄筋モルタル柱を用い、以下に述べ る各種の影響要因に関する基礎実験を行った。

2.実験概要

本実験では、柱部材のせん断破壊、特にぜい 性破壊を引起す斜め引張破壊を再現し、モルタ ル断面で分担できる同耐力を求めるため、図-1に示すように柱中間部、またはその一部に帯 鉄筋を配置しない小型部材(柱部の断面寸法:

*1 九州産業大学教授 工学部土木工学科 博士(工学) (正会員)

-247-

200×200mm) を計 28 体作製し, 図 - 2 の装 置を用いて軸力載荷および破壊試験を行った。 表 - 1 に本実験に使用したモルタルの示方配合 を,表 - 2 に破壊試験時のモルタルの力学特性 を示す。なお,軸方向鉄筋および帯鉄筋にはD 6 (実測降伏強度:334N/mm²)を用いた。

実験Iでは、軸圧縮力の持続の有無および交 番水平載荷による影響を調べるため,28-D6お よび36-D6の軸方向鉄筋を2本または3本束ね で配筋した部材を各2体作製し,7日間シート 内で湿潤養生した後,各1体は,材齢7日から 図-2の柱上部に設置したジャッキにより、軸 圧縮耐力の約1割に相当する中心軸圧縮力100 kNを実験室内の大気中で約 110 日間持続載荷 し、そのまま破壊試験を行った。なお、軸力を 一定に保つため、載荷直後は数時間間隔、その 後は1日毎にジャッキ圧を調整した。また,柱 中間部4側面に貼付したひずみゲージを用いて, 持続載荷期間中の全ひずみを測定し、破壊試験 時のモルタル断面の圧縮応力度を推定した。残 りの各1体は、モルタルの時間依存ひずみによ る影響を無くすため、破壊試験までシート内で 湿潤養生を継続し,破壊試験直前に中心軸圧縮 力100 kNを載荷した。破壊試験は40,50 およ び60kNの正負交番水平載荷を各2回繰返した 後、最大荷重に達するまで単調水平載荷した。

実験Ⅱでは、軸圧縮力の持続の有無および中 心軸圧縮力(25,50,75 および 100 kN)の違 いによる影響を調べるため、36-D6 の軸方向鉄 筋を3本束ねで配置した部材を各2体作製し、 実験Ⅰと同様な養生および軸力載荷を行った後、 破壊試験は単調水平載荷で行った。ただし、軸 圧縮力の持続期間は約60日間とした。

実験Ⅲでは、軸圧縮力の持続の有無および軸 方向鉄筋量(20-D6,24-D6,28-D6 および 36-D6)の違いによる影響を調べるため、軸方 向鉄筋を1本ずつ等間隔に配置した部材を各2 体作製し、実験Iと同様な養生および軸力載荷 を行った後、破壊試験は単調水平載荷で行った。 なお、実験I~Ⅲまでの部材は、帯鉄筋を図-1のように配置した。

実験IVでは、軸圧縮力の持続の有無およびせん断スパン比の影響を簡易的に調べるため、フ ーチング上面から 200, 300, 400 および 500 mm

図-1 部材の形状寸法

表 - 1 モルタルの示方配合

W	C	S	F	AE剤	
	g / m ³				
258	409	1430	60	818	
注).F:炭酸カルシウム微粉末					

の区間は帯鉄筋を配置していない部材を各2体 作製し,実験Ⅱと同様な養生,軸力載荷よび破 壊試験方法で行った。

表-3に本実験全体の概要をまとめて示す。

3.実験結果および考察

表-4に全部材の実験結果および計算結果を

表 - 2 破壊試験時のモルタルの力学特性

実験	養生	部材記号	F'c	Ft	Em
	空気中	RM1,2	30.9	2.9	19.8
	湿潤	RM3,4	35.5	2.5	26.4
	公領由	RM 5,6	34.0	3.1	20.2
	エメデ	RM7,8	37.0	2.7	22.3
	湿潤	RM9,10	34.9	3.1	24.9
		R M11 , 12	37.5	3.0	22.9
	空気中	R M13 , 14	36.9	3.2	24.6
		R M15 , 16	34.3	3.6	23.7
	湿潤	R M17 , 18	35.1	2.8	25.9
		R M19 , 20	34.5	2.6	25.3
	空気中	R M21 , 22	37.1	3.3	22.2
		R M23 , 24	38.4	3.4	23.1
	油油	R M25 , 26	34.3	2.6	24.8
	小业/用	R M27 , 28	32.7	3.0	25.1

注).F'c: 圧縮強度(N/mm²) Ft: 引張強度(N/mm²) Em: ヤング係数(kN/mm²)

まとめて示す。なお、同表中のσ'm はモルタル の時間依存ひずみの影響を考慮して求めた破壊 試験時のモルタル断面の圧縮応力度を、Hu は 部材破壊時の最大水平荷重を、Hma は側面の 軸方向鉄筋も考慮して求めた曲げ破壊耐力の計 算値を、Hva は土木学会「コンクリート標準示 方書:設計編」のせん断耐力算定式の基になっ た二羽ら⁵⁾の提案による式(1)から求めた計算 値を示している。

Vca=0.2f_c¹/₃(100p_w)¹/₃(
$$\frac{10^{3}}{d}$$
)¹/₄(0.75+ $\frac{1.4d}{a}$)b_wd β_{n}
… (1)
ここに f'c:コンクリートの圧縮強度 (N/mm²)

d : 部材の有効高さ, bw: 部材幅 βn: 軸圧縮力の影響係数

本論文では、引張鉄筋比 pw は側面の軸方向 鉄筋を無視し、軸圧縮力に対する影響係数 β n は β n = 1 + 2 Mo/Mu を用いた。ここに、デ コンプレッションモーメントMo は、応力移行 を考慮した表中の σ 'm から求めた値を、曲げ破 壊耐力Mu は、表中のHma にフーチング上面か ら水平載荷点までの距離 500mm を乗じた値を 用いた。本実験の場合、せん断スパンは全部材 共、 a = 500mm 一定であるが、破壊時のひび 割れ性状を考慮して、帯鉄筋を配置していない 区間長をせん断スパンとして計算した。

表-4の破壊形式のうち,斜め引張破壊は, 曲げせん断ひび割れとは別に,最大水平荷重直

表-3 実験概要

		+1 1 4				
実験	部材 記号	軸方向 鉄筋量	固定要因	変動要因		
	R M 1	28-D6		110日間持続載荷		
	R M 2	36-D6	正負交番載荷	鉄筋量の相違		
	R M 3	28-D6	軸力100kN	湿潤·直前載荷		
	R M 4	36-D6		鉄筋量の相違		
	R M 5	36-D6	単調載荷	60日持続 25kN		
	R M 6			60日持続 50kN		
	R M 7			60日持続 75kN		
	R M 8			60日持続 100kN		
	R M 9			直前載荷 25kN		
	R M10			直前載荷 50kN		
	R M11			直前載荷 75kN		
	R M12			直前載荷 100kN		
	R M13	20-D6		110日間持続載荷		
	R M14	4 24-D6 5 28-D6				
	R M15		鉄筋量の相違			
	R M16	36-D6	単調載荷			
	RM17 20-D6 軸力100kN	軸力100kN				
	R M18	24-D6		直前載荷 鉄筋量の相違		
	R M19	28-D6				
	R M20	36-D6				
	R M21	28-D6	単調載荷 軸力100kN	60日持続 500mm		
	R M22			60日持続 400mm		
	R M23			60日持続 300mm		
	R M24			60日持続 200mm		
	R M25			直前載荷 500mm		
	R M26			直前載荷 400mm		
	R M27			直前載荷 300mm		
	R M28			直前載荷 200mm		

実	部材	'm	Hu	Hma	Hva	ᇪᆤ	
験	記号	N/mm ²	kN	kN	kN	饭環形式	
	R M 1	0.21	55	62	52	创め引進	
	R M 2	-0.23	57	75	54	がりつうけた	
	R M 3	2.18	74	63	64	曲ビザキトム。座の	
	R M 4	2.11	88	75	66	面けての図	
	R M 5	-0.79	62	65	49	斜め引張	
	R M 6	-0.43	61	69	56	曲げせん断	
	R M 7	-0.32	61	72	59		
	R M 8	0.07	65	75	65	斜め引進	
	R M 9	0.52	52	65	52	MILE COLU	
	R M10	1.04	67	69	57		
	R M11	1.54	85	73	61	曲げせん断	
	R M12	2.05	79	76	67	斜め引張	
	R M13	0.61	56	52	49		
	R M14	0.30	59	58	50	幻め己進	
	R M15	-0.02	59	63	49		
	R M16	-0.53	60	75	51	MILE COLU	
	R M17	2.26	60	51	56		
	R M18	2.22	62	57	58		
	R M19	2.17	72	63	59	曲げせん断	
	R M20	2.09	85	75	62	斜め引張	
	R M21	0.49	53	64	42	斜め引張	
	R M22	0.49	57	64	47		
	R M23	0.51	71	64	52		
	R M24	0.51	69	64	67	曲げ引張	
	R M25	2.16	56	63	47		
	R M26	2.16	65	63	52	斜め引張	
	R M27	2.16	70	63	59		
	R M28	2.16	73	63	74	曲げ引張	

表 - 4 全部材の実験結果および計算結果

前に帯鉄筋を配置していない区間の対角線上に ひび割れが急速に進展し、同時に軸方向鉄筋が 座屈して、大きなせん断ずれを生じて破壊した 状態を、曲げせん断破壊は、柱中間部の曲げひ び割れから進展した斜めひび割れの幅が徐々に 拡大し、部材上部だけが若干傾いた後、ひび割 れ先端部のコンクリートが圧壊して破壊した状 態を,曲げ引張破壊は,柱付け根部の曲げひび 割れが徐々に拡大し,柱部全体が大きく傾いて, 引張縁の鉄筋が降伏した状態を示している。な お、斜め引張破壊と曲げせん断破壊は、最大水 平荷重に達すると同時に, 軸圧縮力を受け持て なくなったが、曲げ引張破壊は、最大水平荷重 以後も軸圧縮力を受け持てる状態にあった。ま た,斜め引張破壊と曲げせん断破壊との区別が 不明瞭な破壊形態を示した部材もあった。

図-3に破壊状況の概略図を示す。

3.1 実験 について

表-4および図-4に示すように、中心軸圧 縮力を持続載荷した部材は共に、最初の60kN の繰返し途中で斜め引張破壊したが、同軸力を 破壊試験直前に載荷した部材は共に, 60 kNま での繰返しにも十分に耐え,破壊形式も曲げせ ん断で破壊した。また,軸方向鉄筋量が増すほ ど、せん断耐力も若干増大した。このように帯 鉄筋を有しない柱部材のせん断耐力は、破壊試 験以前の荷重履歴の影響を強く受けることがわ かる。これは前述したように、軸圧縮力を持続 載荷した部材の場合,断面内部の応力移行によ り、モルタル断面の圧縮応力度の低下で斜めひ び割れ耐力が低減すると共に,軸方向鉄筋の圧 縮応力度の増大で座屈耐力も低減するためと考 えられる。図 - 5 と図 - 6 に示す繰返し載荷時 の荷重-変位曲線は, RC部材のそれ⁴⁾と比較 して,荷重除去時の復元性が乏しくなっている。 これは、コンクリートとモルタルではひび割れ 進展に対する骨材粒子のインターロッキング効 果が相違するためと考えられる。

同表に示す二羽らの提案式から求めたHva は、軸圧縮力を持続した部材のHuとほぼ一致 し、直前載荷した部材のそれより小さくなって いる。これは、通常の破壊試験では、湿潤養生 後、部材を大気中に静置することが多く、この 間のコンクリートの時間依存ひずみによる部材

図 - 5 RM1部材の荷重 - 変位曲線

内部の応力移行で,はり部材のせん断耐力は若 干低減すると考えられるが,一般にその影響は 無視されている。同提案式も大気中に静置され たはり部材の実測結果を基に求められた経験式 であるため,実験結果と比較した場合,Hvaが 軸圧縮力を持続載荷した部材のHuに近似する 結果になったと考えられる。なお,応力移行を 無視して求めると,モルタルの圧縮強度が同じ であれば,軸圧縮力を持続載荷した部材と直前 載荷した部材のHva は等しくなり,この場合, 持続載荷した部材のせん断耐力を過大に算定す ることになる。

3.2 実験 について

表-4および図-7のように、軸圧縮力を持 続載荷した部材のHu は、軸圧縮力の大きさに 関係なくほぼ一定になっているが、直前載荷し た部材のそれは、RM11部材を除外すれば、軸 圧縮力の増加に伴って増大している。また、R M9部材を除外すれば、実験Iの結果と同様、 持続載荷した部材のHu が直前載荷した部材の それより小さくなっていることもわかる。同条 件の実験 I と実験 II のHu を比較すると、軸圧 縮力を持続載荷したRM8部材のHuは同条件 のRM2部材のそれより大きくなっているが, 直前載荷したRM12部材のHuは同条件のRM 4部材のそれより小さくなっている。これは, 両実験のモルタル強度や持続載荷期間の相違だ けでなく,実験結果自体にばらつきがあるため と考えられる。

Hvaは、応力移行を考慮しても、持続載荷した部材のHuの傾向とは相違しており、全体的にも過小算定していることがわかる。

3.3 実験 について

本実験では、軸方向鉄筋比を1.6~2.8%まで変 えて行ったが、軸圧縮力の持続の有無や軸方向 鉄筋量に関係なく、全部材共、せん断破壊した。 表 - 4および図 - 8に示すように、軸圧縮力を 直前載荷した部材のHuは、軸方向鉄筋量の増 加に伴って増大しているが、持続載荷した部材 のそれにはあまり差異が見られない。これは、 軸圧縮力を持続載荷した部材の場合、軸方向鉄 筋量の増加によるせん断耐力の増大と、モルタ ル断面の圧縮応力度の低下による同耐力の低減 とが相殺され、上記のような結果になったと考

えられる。

Hvaは、Huと比較して、全体的に過小算定 しているが、定性的には軸方向鉄筋量の影響を 妥当に算定している。

3.4 実験 について

本実験では、帯鉄筋の配置を変えた部材を用 いて、せん断スパン比の影響を簡易的に調べた。 表 - 4 および図 - 9 のように、曲げ引張破壊し た R M24 部材と R M28 部材を除外すれば、帯 鉄筋を配置していない区間長が短くなるほど、 軸圧縮力の持続の有無に関係なく、Hu は大き くなっている。また、R M23 部材を除外すれば、 軸圧縮力を持続した部材のHu は直前載荷した 部材のそれより若干小さくなっている。

Hvaは、Huと比較して、定量的には過小算 定しているが、定性的な傾向は類似しているこ とがわかる。

3.5 実験全体について

実験 I ~ IVまでの結果から、軸圧縮力の持続 の有無が帯鉄筋を有しない柱部材のせん断耐力 に重大な影響を及ぼすことがわかる。ちなみに, せん断破壊した 24 体で比較すると、軸圧縮力 を持続載荷した部材のHu の平均値は, 直前載 荷した部材のそれの約8割になっている。図-10にせん断破壊した全部材のHuとHvaとの関 係を示す。同図のように、両者に強い相関は見 られないが、本研究のように、提案式中の係数 βn に応力移行の影響を考慮することにより, 両者の相関が若干改善されることがわかる。た だし、せん断破壊の機構がはり部材と柱部材で は相違するため、はり部材の算定式を柱部材に 適用することには問題があると思われる。例え ば,はり部材ではせん断ひび割れ時の引張鉄筋 によるダウエル効果を引張鉄筋比で考慮してい るが,特に柱部材で斜め引張破壊する場合は, ひび割れ位置の軸方向鉄筋が破壊時点でも圧縮 状態にあり、せん断耐力にはその座屈耐力が関

連すると思われる。したがって,柱部材の場合 は,全軸方向鉄筋量をその影響係数として考慮 すべきであろう。

紙面の関係上,詳細な比較検討は割愛するが, 以前に行った鉄筋コンクリート柱と比較して, 鉄筋モルタル柱は,軸圧縮力の持続の有無によ る影響でせん断耐力の低減割合が大きくなるこ と,破壊時の部材の水平変位が小さくなること, 軸方向鉄筋比がほぼ等しい部材でも破壊形式が 相違することなどが判明した。

4.まとめ

本研究では、軸圧縮力の持続の有無が帯鉄筋 を有しない柱部材のせん断耐力に及ぼす影響を 調べるため、小型の鉄筋モルタル柱を用いた基 礎実験を行った。以下に、その結果を要約する。

(1) 軸圧縮力を持続した部材のせん断耐力は, 直前載荷した部材のそれと比較して, 2~4割 低減する。

(2)軸圧縮力を直前載荷した部材のせん断耐 力は、軸圧縮力に比例して増大するが、持続載 荷した部材のそれは、軸圧縮力の大きさに関係 なくほぼ一定になる。

(3) 軸圧縮力を直前載荷した部材のせん断耐 力は,軸方向鉄筋量に比例して増大するが,持 続載荷した部材のそれは,軸方向鉄筋量に関係 なくほぼ一定になる。

(4)軸圧縮力の持続の有無に関係なく,帯鉄筋を配置しない区間長が短くなるほど,せん断耐力は大きくなる。

(5) 二羽らの提案式の係数 β n に持続期間中 の応力移行の影響を考慮すれば,その算定精度 は若干改善されるが,同式を柱部材に適用する には,まだ多くの問題点が残されている。

参考文献

- コンクリート標準示方書 耐震設計編,土 木学会,1996
- 2)道路橋示方書・同解説 V耐震設計編,日本道路協会,1996
- 3) 宮川邦彦,前田隆志,佐藤武夫:PC柱の ひびわれおよび破壊性状に関する基礎的研 究,コンクリート工学年次論文報告集,Vol. 17, No.2, pp.599-604, 1994.6
- 4) 宮川邦彦:帯鉄筋を有しないコンクリート 柱の破壊性状に関する基礎的研究、コンク リート工学年次論文集, Vol.22, No.3, pp.343-348, 2000.6
- 5) 二羽淳一郎,山田一宇,横沢和夫,岡村甫: せん断補強鉄筋を用いない RC はりのせん 断強度式の再評価,土木学会論文集, No.372/V-5, pp.167-176, 1986.8