論文 耐震壁中間柱のせん断強度に及ぼす補強筋強度の影響

姜 優子*1·江崎文也*2·小野正行*3·別枝和美*4

要旨:耐震壁付帯ラーメンの中間柱の応力状態を再現できる中間柱要素試験体のせん断 実験法を用いて、中間柱の無補強試験体、主筋補強試験体および帯筋補強試験体につい て、せん断力載荷実験を実施した。実験結果によれば、要素試験体の破壊機構は、連層 耐震壁中間梁のせん断破壊機構に極めて近似していることがわかった。また、中間柱の せん断強度上昇には主筋が最も効果的であることがわかった。

キーワード: 耐震壁, 中間柱, せん断破壊, せん断強度, 主筋, 帯筋

1. 序

耐震壁の中間柱や中間梁は,単独の柱や梁と 異なり,壁板からのせん断応力のほかせん断ひ び割れに伴う壁板の膨張による拘束応力が作用 する。せん断ひび割れが発生した後の壁板を直 交異方性弾性板と仮定した耐震壁に関する応力 解析によれば,中間部材には側部材でみられる ようなせん断ひび割れの進展・続発によって生 じるせん断力の集中はない。ひび割れの進展・ 続発による異方性が進行しても中間部材のせん 断力は, 壁板に生じる単位長さ当たりのせん断 力とほぼ同じ程度のせん断力が生じることが指 摘されている¹。しかし、中間部材は、壁筋と 同様にせん断ひび割れの発生に伴う壁板の膨張 を拘束する役目をしていることから,中間部材 には主として拘束反力による大きな軸方向引張 力が生じる。

文献2)では、耐震壁付帯ラーメン中間部材 のせん断強度を明らかにするため、付帯ラーメ ン中間柱の応力状態が再現できる要素試験体モ デルのせん断実験法を提案した。この実験装置 を用い、鉛直荷重による一定軸力が作用しない 場合について、主筋比および帯筋比を変動因子 とした中間柱要素試験体のせん断実験を行っ た。その結果、主筋比を増大するとせん断強度 が増大する傾向があるが,必ずしも主筋比に比 例しているようではないこと,また,せん断強 度に及ぼす帯筋比の影響は明らかにされていな いことなどがわかった。そこで,中間柱のせん 断強度に及ぼす主筋比および帯筋比の影響を明 らかにするため,各補強筋のみで補強された要 素試験体のせん断実験を計画した。

本論は、これらの試験体を用いた中間柱のせ ん断実験により、せん断強度に及ぼす補強筋の 影響について、実験的に検討した結果を述べる ものである。

2. 実験概要

2.1 試験体形状および加力方法

図-1に示す耐震壁付帯ラーメンの中間柱 のせん断破壊の恐れが大きい部分に着目して, 文献2)で用いた中間柱要素試験体によるせん 断実験により,せん断強度に及ぼす補強筋強度 の影響について検討を行うことにした。図-2に試験体形状および配筋の例を,表-1に 試験体一覧を示す。また,表-2には,使用し た材料の力学的性質を示す。試験体形状は,せ ん断破壊の恐れが大きい連スパン耐震壁中間柱 中央部を想定し,実物の約1/3縮尺モデル中間 柱要素試験体とした。壁板の厚さは,最大耐力

*1 近畿大学大学院 産業技術研究科造形学専攻 修士(工学)(正会員)
*2 九州共立大学教授 工学部建築学科 工博(正会員)
*3 近畿大学教授 九州工学部建築学科 博士(工学)(正会員)
*4 近畿大学大学院 産業技術研究科造形学専攻(正会員)

時に壁板のスリップ破壊が先行しないように決 めた。実験は、中間柱を補強していない無補強 シリーズ,主筋のみで補強した主筋補強シリー ズ,帯筋のみで補強した帯筋補強シリーズの3 つの実験シリーズを計画した。 壁筋比は、 いず れの試験体とも0.32%である。試験体にはIab-c-d(e)の記号を付けている。aはコンクリー トシリンダー圧縮強度の値 (MPa), bは主筋比 の値(%), cは帯筋比の値(%)を, dは鉛直 荷重による中間柱の軸圧縮応力度 (MPa), eは 同一試験体を区別する番号を,それぞれ示して いる。剛な側梁間に挿入した楔を壁板の対角線 方向(水平と45度)に圧縮する方法²⁾で,一方 向単調増加荷重により,試験体にせん断力載荷 を行った。本載荷法では,曲げの影響は少ない と考えられる。通常,中間柱には鉛直荷重によ る一定軸方向力が作用するが,本実験シリーズ では鉛直荷重による一定軸力は作用させていな い。これらの影響については、今後検討する予 定である。

2.2 測定方法

上下の剛な梁に埋め込んだボルトに固定され た測定フレームに取り付けた高感度変位計にて 柱の水平変形および鉛直変形を測定した²⁾。ま

図 – 1 せん断破壊の恐れがある中間柱 部分

図-2 試験体形状・配筋およびゲージ 貼付位置

	intermediate column				wall	
specimen	section	longitudinal	transversal	thickness	reinforcement	
	(mm×mm)	reinforcement	ent reinforcement			
I18-1-0-0		6-D10 (p _g =1.1%)				
I18-2-0-0		6-D13 (p _g =1.9%)	—			
I18-3-0-0		10-D13 (pg=3.2%)				
I19-0-0.3-0	200×200		D6@100mm (p _w =0.32%)	100	D6@100mm	
I19-0-0.6-0		—	D6@ 50mm (p _w =0.64%)		(single layer)	
I19-0-1.2-0			D6@ 25mm (p _w =1.28%)		(p _s =0.32%)	
I23-0-0-0(1·2·3)			_			

表一1 試験体一覧

表-2 使用材料の力学的性質

鉄筋

コンクリート

specimen	$\sigma_{\rm B}$	E _C
I18-1(2,3)-0-0	17.9	14.5
I19-0-0.3 (0.6, 1.2) -0	19.3	15.6
I23-0-0-0	23.0	17.1

 $\sigma_{\rm B}$:シリンダー圧縮強度(MPa), E_c:ヤング係数(GPa)

bar E, а σ_{v} σ_{u} ε 0.32 197 11.5 D6 371 504 D10 0.71 22.5 504 189 362 1.27 354 486 21.5 D13 185

a:断面積(cm²), σ_y :降伏点(MPa), σ_u :引張強度(MPa) E_s:ヤング係数(GPa), ϵ :伸び(%)

た,図-2に示す位置の柱主筋および帯筋,壁 板の補強筋の各ひずみをワイヤーストレンゲー ジにて測定した。載荷速度はおよそ1.6kN/sec とした。荷重,変位および鉄筋のひずみの測定 は,0.1secのサンプリング間隔で記録し,試験 体に生じたひび割れの記録は,目視およびビデ オ撮影によった。

3. 実験結果

3.1 破壊性状

図-3に、無補強シリーズの試験体につい て、水平荷重Qと中間柱部材角R (=柱水平変 位/柱内法高さ)との関係、Qと中間柱軸方向 平均ひずみ ε_v との関係および実験終了時の試 験体のひび割れ状況を示す。なお、水平荷重Qは、試験機の荷重Pが水平断面に対して45度 方向なので、 $Q=P/\sqrt{2}$ とした。

無補強シリーズの場合,剛な梁と接する上下 の壁板隅角部を結ぶ斜め45度方向に,せん断 ひび割れが発生し,図-3に示すように,急激 に荷重が低下した。このひび割れは柱にも貫通 し,その後低下した荷重からの上昇はほとんど みられない。柱の軸方向平均ひずみ履歴曲線に よれば,引張ひずみが徐々に増大していること から,中間柱が斜め引張破壊を起こし,壁筋の みが抵抗する機構が形成されたものと判断される。

図-4に,帯筋補強シリーズの試験体につ いて,水平荷重0と中間柱部材角Rとの関係, Qと中間柱軸方向平均ひずみ ε との関係および 実験終了時の試験体のひび割れ状況を示す。帯 筋のみで補強された実験シリーズの場合は,補 強筋のない無補強シリーズと同様に,壁板隅角 部を結ぶ斜め45度方向に、せん断ひび割れが 発生し、図-4に示すように、急激に荷重が低 下した。しかし, 無補強の場合と異なり, その 後ひび割れ時の荷重近傍まで荷重の上昇がみら れる。これは、帯筋が抵抗していることによる ものと考えられる。しかし、ひび割れ時の荷重 までは回復していない。柱の軸方向平均ひずみ 履歴曲線によれば,無補強シリーズの場合と同 様に,部材角の増大とともに引張ひずみが徐々 に増大していることから,中間柱が斜め引張破 壊を起こし,壁筋と帯筋が斜めひび割れの広が りに抵抗する機構が形成されたものと判断され る。

図-5に、主筋補強シリーズの試験体について、水平荷重*Q*と中間柱部材角*R*との関係、 *Q*と中間柱軸方向平均ひずみ*ε*,との関係および 実験終了時の試験体のひび割れ状況を示す。主

図ー3 無補強シリーズ試験体の水平荷重 Q と中間柱部材角 R との関係, Q と中間柱軸方向 平均ひずみ ε、との関係および実験終了時のひび割れと破壊状況

筋のみで補強された実験シリーズの場合は,前 述の2つの実験シリーズ同様に,上下の壁板隅 角部を結ぶ斜め45度方向に,せん断ひび割れ が発生するが,そのひび割れの進展は柱との境 界部で一旦止まった。この時一時荷重が低下す るのは前述の2つの実験シリーズの場合と同様 であるが,図-5に示すように,ひび割れ後に ひび割れ時の荷重以上に荷重が増大することが 異なっている。柱の軸方向平均ひずみ履歴曲線 によれば,柱の伸びひずみが止まると荷重が最 大となり,その後柱が縮み始めると荷重が徐々 に低下した。通常,せん断破壊を起こすと部材 が縮むので,最大荷重以後は柱がせん断破壊し たものと考えられる。

中間部材の水平抵抗機構から判断すると,水 平せん断力の増加とともに壁板に斜めひび割れ が生じ,軸方向引張力が作用することから,中 間部材の補強筋としては,軸方向引張力に抵抗

図-4 帯筋補強シリーズ試験体の水平荷重 Q と中間柱部材角 R との関係, Q と中間柱軸方 向平均ひずみ ε、との関係および実験終了時のひび割れと破壊状況

図-5 主筋補強シリーズ試験体の水平荷重 Q と中間柱部材角 R との関係, Q と中間柱軸方 向平均ひずみ ε、との関係および実験終了時のひび割れと破壊状況

できるものが最も効果的である。主筋はダボ作 用による抵抗もある程度期待できるので,本実 験の結果からも,中間柱の主筋が水平抵抗に最 も効果がある結果を示した。

いずれの実験シリーズとも連層耐震壁の実験 結果から観察された中間梁のせん断破壊に極め て類似した破壊性状を示していることから,本 実験で計画した要素試験体を用いて耐震壁中間 柱のせん断強度を検討できると思われる。

図-6に,主筋補強シリーズ試験体のRと 主筋ひずみとの関係を示す。これらによると, 主筋比が最も大きい試験体の場合は降伏ひずみ までは達していない。しかし,ひび割れ後には 引張ひずみが急激に大きくなっていることか ら,主筋が載荷荷重に対して有効に抵抗してい ることがわかる。主筋比が2%以下の場合は,最 大水平荷重時には降伏ひずみより大きく,主筋 は降伏している。 **図-7**に,各実験シリーズの*R*と壁横筋ひ ずみとの関係を示す。これらによれば,ひび割 れ後急激に引張ひずみが生じ,水平荷重が最大 になる以前に降伏していることがわかる。

図-8に、帯筋補強シリーズ試験体のRと 帯筋ひずみとの関係を示す。ひび割れ後,引張 ひずみが大きくなっているが,降伏ひずみまで 達していないものもあり,壁横筋ほどの抵抗は していないようである。

3.2 強度性状

表-3に実験結果一覧を示す。ひび割れ時 の部材角は、いずれの試験体ともほぼ同じであ る。ひび割れ時の水平荷重は、コンクリート強 度が同一であれば、ほぼ同程度となった。ま た、コンクリート強度が高いほどひび割れ荷重 が高くなっている。主筋で補強されていない試 験体の場合は、帯筋比1.2%の試験体を除き、ひ び割れ時が最大荷重となっている。

中間柱のせん断強度に及ぼす補強筋強度の影響を考察するため,主筋強度を変化させた実験シリーズ試験体の実験結果より,中間柱せん断強度 Q_{cu} と主筋強度 $p_g\sigma_{yg}(\sigma_{yg}: \pm筋降伏強度)$ との関係を,**図**-9に示す。各試験体のコンクリート強度が異なることから,コンクリートのせん断破壊で決まる強度がコンクリート圧縮強度の平方根で表すと適切に評価できるとの報告³⁾もあることを考慮し, Q_{cu} , $p_g\sigma_{yg}$ を, $\sqrt{\sigma_B}$ で除した値で比較した。壁横筋が降伏していることから, Q_{cu} を(1)式より求めた。

$$Q_{cu} = \frac{P_u}{\sqrt{2}} - Q_{wu} \tag{1}$$

ここで,

P_":試験機の最大荷重

Q_{ww}:壁横筋強度

 $(=p_s \sigma_{ys} tl', p_s : 壁筋比, \sigma_{ys} : 壁筋降伏点強$ 度, t: 壁厚, l': 壁内法長さ)

図-9には文献2)で報告した実験資料も併 せて示している。これらによると,主筋強度が 大きくなると,中間柱せん断強度が増大する傾 向があることがわかる。帯筋補強すれば帯筋の ない試験体に比べてせん断強度が多少増大する 傾向がみられるが,主筋ほどの効果はないよう である。

4. 結論

中間柱の要素試験体を用いて,各補強筋のみ の実験シリーズを行った結果,以下のことがわ かった。

- 1)中間柱要素試験体のせん断破壊は,既往の連 層耐震壁の水平力載荷実験から得られた中間 梁のせん断破壊性状とほぼ同じであった。
- 2)水平せん断力の増大とともに壁板に斜めひび割れが生じて軸方向引張応力が生じるため、中間柱のせん断強度は、主筋強度に最も影響を受ける。せん断強度を大きくするためには、主筋強度を増大することが最も効果的と考えられる。
- 3) 帯筋を設けると多少せん断強度が増大する

表 — 3	実験結果一	覧
-------	-------	---

spaaiman	first cracking load		maximam load	
specifien	Q _{cr} (kN)	R _{cr} (%)	Q _u (kN)	R _u (%)
I18-1-0-0	103	0.01	182	1.55
I18-2-0-0	109	0.02	190	0.55
I18-3-0-0	87	0.04	222	0.73
I19-0-0.3-0	134	0.02	134	0.02
I19-0-0.6-0	139	0.01	139	0.01
I19-0-1.2-0	116	0.02	120	0.47
I23-0-0(1)	139	0.02	139	0.02
I23-0-0(2)	125	0.02	125	0.02
123-0-0-0(3)	159	0.02	159	0.02

図 - 9 中間柱せん断強度 *Q_{cu}* と主筋強度 *p_u*σ_{vu} との関係

傾向があるが,主筋強度ほどの効果はないよ うである。

今後パラメータを変化させた実験を行い,せ ん断強度に及ぼす補強筋の効果について検討す る予定である。

参考文献

- 江崎文也,船本憲治,富井政英:せん断ひ び割れ以後の1層連スパン耐震壁の力学的 性状に関する理論的研究,日本建築学会九 州支部研究報告,第27号,pp.225-228, 1983,
- 2) 姜優子,江崎文也,小野正行:軸力が作用 しない中間柱のせん断強度に関する実験的 研究,コンクリート工学年次論文報告集, Vol.23, No.3, pp.457-462, 2001.7
- ACI, Building Code Requirements for Reinforced Concerte (ACI 318-89), ACI, 1989