論文 せん断補強筋の無い大型 PC はりのせん断耐力に関する解析的研究

田村 聖^{*1}・ARAVINTHAN.T^{*2}・濱田 譲^{*3}・二羽 淳一郎^{*4}

要旨:本研究は、せん断圧縮破壊した PC はりの実験結果と非線形有限要素法による解析結果の比較を行い、解析結果の妥当性を検討したものである。その結果、汎用の2次元非線形有限要素解析プログラムを用いて解析を実施しても、実験結果を概ね評価することができた。また、せん断圧縮破壊する PC はりのせん断耐力は、曲げ圧縮部の深さに関係することを解析的に明らかにした。

キーワード: PC はり, せん断圧縮破壊, タイドアーチ的耐荷機構, 非線形有限要素法

1. はじめに

せん断圧縮破壊は、せん断スパン有効高さ比 (以下, a/d と称す)が比較的小さいはりにおいて 一般的に生ずるせん断破壊形式である。しかし、 プレストレストコンクリート(以下, PC と称す) はりのせん断載荷試験を行った場合, a/d を 3.0 以上と比較的大きくしてもせん断圧縮破壊が生 じることが指摘されており¹⁾,このような破壊 形式に至る PC はりのせん断耐荷機構を明確に する必要があると思われる。また、土木学会コ ンクリート標準示方書²⁾のせん断耐力評価式は、 斜めひび割れ発生荷重を評価するものであり、 せん断圧縮破壊となる部材のせん断耐力評価式 は規定されていないのが現状である。

そこで、本研究ではせん断圧縮破壊した PC はりの実験結果と非線形有限要素法による解析 結果との比較を行い、解析結果の妥当性を検討 した。次に、PC はりのせん断耐荷機構を解析的 に明らかにするため,導入プレストレス量およ び最大曲げモーメント区間のコンクリート圧縮 領域に着目して検討を行った。

2. 解析の対象とした実験の概要

著者らは,過去に高性能軽量コンクリートを 用いた PC 部材のせん断耐力を検証するため, 有効高さ1mを有する大型PCはりのせん断載荷 試験を実施した³⁾。その実験結果を表-1に示 す。供試体の a/d は 3.75 で,比較的少ないプレ ストレス量を導入した。供試体が破壊に至るま での過程は,斜めひび割れ上部のコンクリート と引張鋼材でタイドアーチ的な耐荷機構が形成 され,さらに荷重が上昇した。最終的には載荷 点付近で斜め斜めひび割れ上部のコンクリート が圧縮破壊した。

本研究では,この実験結果を解析の対象とした。

下縁導入 圧縮強度 引張強度 破壊エネルキ・・ 終局荷重 供試体 はり高さ G_f 破壞形式 a/d プレストレス f'_c f_t P_{max} (kN)No, (mm) (N/mm^2) (N/mm^2) (N/mm^2) (N/m)45LC-3 1100 3.75 55.1 2.50 68.02 1010 せん断圧縮 2.60 45LC-5 1100 5.44 2.29 3.75 53.3 59.31 1137 せん断圧縮 せん断圧縮 60LC-5 1100 3.75 5.78 68.7 3.41 76.08 1200

表一1 実験結果

*1 ドーピー建設工業(株) 技術センター 研究員 (正会員)

*2 ドーピー建設工業(株) 技術センター 主任研究員 工博 (正会員)

*3 ドーピー建設工業(株) 技術センター 主任研究員 工修 (正会員)

*4 東京工業大学大学院教授 理工学研究科 土木工学専攻 工博 (正会員)

3. 非線形有限要素解析

本研究では、2 次元非線形有限要素解析プロ グラム「ATENA」を用いて解析を実施した。コン クリート要素は4節点アイソパラメトリック要 素であり、非線形破壊力学に基づいた引張破壊 および圧縮域でのひずみ軟化を含む非線形挙動 などの特性を考慮した。

3.1 構成則

2 軸応力状態に基づいた等価 1 軸則と Kupfer の2 軸破壊基準⁴⁾を図-1および図-2に示す。 解析では、2 軸応力状態に基づいた等価 1 軸則 を用い2次元コンクリート要素をモデル化した。 ただし、2 軸応力状態を考慮するため図-2に 示す Kupfer の2 軸破壊基準により圧縮強度(R_c^{ef}) および引張強度を(R_t^{ef})を評価した。

等価1軸則における引張側の構成則は,引張 強度に達するまでを線形弾性材料とした。また, 引張強度に達した後は式(1)に示す Hordjik の指 数関数モデル⁴⁾によって軟化を考慮した。

$$\frac{\sigma}{R_t^{ef}} = \left[1 + \left(3.0\frac{w}{w_{cr}}\right)^3\right] \exp\left(-6.93\frac{w}{w_{cr}}\right) - \frac{w}{w_{cr}}\left(1 + 3.0^3\right)\exp\left(-6.93\right) \quad (1)$$

$$w_{cr} = 5.14 \frac{G_f}{R_t^{ef}} \tag{2}$$

ここで,wはひび割れ開口変位,w_{cr}は応力が 完全に解放された時のひび割れ開口変位,G_fは 破壊エネルギーをそれぞれ示す。

圧縮側の構成則は、圧縮強度に達するまでは **図**-1に示す放物線状の応力-ひずみ関係を用 いた。圧縮強度に達した後は、仮想圧縮平面モ デルに基づいた軟化則を用いた。仮想圧縮平面 モデルを**図**-3に示す。このモデルでは、応力 が完全に解放された時点のひずみ ϵ_d を式(3)の ように定義した。

$$\varepsilon_d = \varepsilon_c + \frac{w_d}{L_c}$$
(3)

ここで、 ϵ_c は応力ピーク時のひずみ、 w_d は 塑性変位、 L_c 'は圧縮に対する損傷幅を示す。Van

図-1 2軸応力状態に基づいた等価1軸則

図-2 Kupfer の2軸破壊基準

Mier の実験⁴⁾より普通コンクリートの場合, w_d=0.0005mとなっている。本解析で対象とした 実験では高性能軽量コンクリートを使用してい るが,w_dの値が明確にされていないため普通コ ンクリートと同じ値を用いた。ひび割れの発生 は,任意のコンクリート要素において引張応力 がコンクリートの引張強度に達した時と定義し, 分散ひび割れモデルを用いた。

3.2 解析モデル

解析モデル図と解析ケースを図-4および表 -2に示す。解析に用いた材料物性は表-1に 示す値を用いた。

本解析では,要素寸法依存性およびひび割れ モデルの違いによる解析結果の妥当性を検討す るため,要素寸法を 75mm および 150mm とし た 2 ケースを設定した。また,ひび割れモデル は固定ひび割れモデルおよび回転ひび割れモデ ルの 2 ケースを設定し,1 体の供試体につき合 計 4 ケースのモデルを設定し解析を実施した。

供試体のモデル化にあたっては、各大型 PC はり供試体の対称性を考慮した 1/2 モデルとし た。荷重の載荷は変位制御とし、修正 Newton-Raphson 法を用いて残差力が所定の収 束判定基準を満足するまで繰返し計算を行った。

PC 鋼材は,離散バー要素を用い 250mm 間隔 でコンクリート要素と接合した。また,プレス トレス力は,実験で測定された有効プレストレ スをひずみに換算し PC 鋼材の要素に一様に作 用させた。

4. 解析結果

4.1 荷重-変位関係

各解析ケースの解析結果を表-3に示す。ま た,fix-75 モデルで解析を実施した各供試体の 載荷点荷重とスパン中央変位の関係を図-5に 示す。解析値と実験値の最大荷重を比較すると, 要素寸法を75mm と設定したケースのほうが, 要素寸法を150mm と設定したケースよりも実 験値をより精度よく評価できている。また,要 素寸法が同一の場合,ひび割れモデルの違いに よる最大耐力への影響は小さかった。

最大変位については、一部の解析ケースを除 いて実験値よりも解析値のほうが小さくなった。 これは、PC 鋼材のモデル化に際して離散バー要 素を用いコンクリート要素と接合している影響

表-2 解析ケース

解析case	要素	寸法	ひび割れモデル		
	75mm	150mm	固定	回転	
fix-75	0		0		
fix-150		0	0		
rot-75	0			0	
rot-150		0		0	

表-3 実験値と解析値の比較

		解析值			宝駩荷	解析値と実験値の比率				
供試体	比較項目	fix-75	fix-150	rot-75	rot-150	天歌恒	fix-75	fix-150	rot-75	rot-150
		1	2	3	4	5	1)/5	2/5	3/5	4/5
45LC-3	最大荷重 (kN)	975	865	982	1052	1010	0.97	0.86	0.97	1.04
	最大変位 (m)	0.031	0.021	0.031	0.037	0.035	0.89	0.60	0.89	1.06
45LC-5	最大荷重 (kN)	1207	1275	1186	1190	1137	1.06	1.12	1.04	1.05
	最大変位 (m)	0.031	0.032	0.028	0.031	0.033	0.94	0.97	0.85	0.94
60LC-5	最大荷重 (kN)	1506	1569	1424	1593	1200	1.26	1.31	1.19	1.33
	最大変位 (m)	0.033	0.034	0.031	0.038	0.037	0.89	0.92	0.84	1.03

であると思われる。

本解析では、全ての解析ケースにおいて支配 的な斜めひび割れが発生している要素の主引張 ひずみおよび載荷点付近の主圧縮ひずみが卓越 することで耐力が低下した。

4.2 ひび割れ状況

実験および解析で得られた 45LC-3 供試体の 最大荷重時におけるひび割れ状況を図-6に示 す。解析結果の図中の太いひび割れ線は,より 大きなひび割れ幅を示している。解析では,(1) 曲げひび割れが進展しない,(2)せん断スパン内 を中心に明瞭な斜めひび割れが発生する,(3)斜 めひび割れ上部のコンクリートと引張鋼材でタ イドアーチ的な耐荷機構を形成し荷重は上昇す る,など実験的に観察されたせん断圧縮破壊特 有の顕著な特徴を推定することができた。

実験で得られたひび割れ状況と各解析ケース で得られたひび割れ状況を比較すると,要素寸 法を75mmと設定し固定ひび割れモデルを用い たケースのひび割れパターンが実験結果の主要 な斜めひび割れが発生している位置およびひび 割れ角度と概ね一致した。この解析結果は,他 の供試体においても同様であった。

以上より、本解析に用いた非線形有限要素法 では、要素寸法を75mmとし固定ひび割れモデ ルを用いることにより実験結果を概ね評価でき ることが明らかとなった。

5. PCはりのせん断耐荷機構

著者らの実験結果より, せん断圧縮破壊する PC はりの破壊までの過程は, 曲げひび割れの延 長として斜めひび割れが発達し, その後, 斜め ひび割れ上部のコンクリートと引張鋼材でタイ ドアーチ的な耐荷機構を形成し, さらに荷重は 上昇する。そして最終的に, 載荷点付近で斜め ひび割れ上部のコンクリートが圧縮破壊し, タ イドアーチ的機構の破壊に至っていると思われ る。PC はりに導入されるプレストレス力が, こ のような耐荷機構にどのような影響を与えるの かを解析的に明らかにするため, 表-2に示す

図-6 45LC-3 供試体のひび割れ状況図

解析ケースの中で実験結果を概ね評価できた fix-75 のモデルを用い、45LC-5 および 60LC-5 供試体の導入プレストレス量のみ変化させて検 討を行った。プレストレスは、供試体上縁に有 害なひび割れが発生しない程度のプレストレス 量とし、供試体下縁応力度を $\sigma_{pe}=6.0$ 、8.0、 10.0N/mm²にそれぞれ設定した。

5.1 荷重一変位関係

解析結果を表-4に示す。また,60LC-5 供試 体の載荷点荷重とスパン中央変位の関係を図-7に示す。非線形有限要素解析によっても導入 プレストレス量の増加に伴ってせん断耐力が増 加することが確認できた。また,変位量が減少 することも確認できた。

表-4に示す曲げひび割れ発生荷重は,解析 で得られたひび割れ図において,スパン中央に

供試体	下縁導入 プレストレス	最大耐力	最大変位	曲げ ^{*1}	斜め ^{*2}
	(N/mm^2)	(kN)	(m)	(kN)	(kN)
45LC-5	σ pe=5.4	1207	0.031	525	571
	σ pe=6.0	1278	0.031	643	668
	σ pe=8.0	1308	0.030	723	772
	σ pe=10.0	1412	0.030	807	856
60LC-5	σ pe=5.7	1506	0.033	588	635
	σ pe=6.0	1556	0.032	664	742
	σ pe=8.0	1637	0.032	730	795
	σ pe=10.0	1658	0.030	831	896

表-4 解析結果

*1:曲げひび割れ発生荷重

*2:斜めひび割れ発生荷重

曲げひび割れが発生した時点の荷重を示す。ま た、斜めひび割れ発生荷重は同様にせん断スパ ン内に明瞭な斜めひび割れが発生した時点の荷 重を示す。この2つのひび割れ発生荷重につい ても、導入プレストレス量の増加に伴って大き くなることが確認できた。

5.2 ひび割れ状況

解析より得られた 45LC-5 供試体の最大荷重 時におけるひび割れ状況を図-8に示す。導入 プレストレスが増加するのに伴い,斜めひび割 れの発生領域が抑制され,圧縮ストラットの幅 が増加しているように見うけられる。この現象 が導入プレストレス量の増加に伴ってせん断耐 力も増加する一つの要因であると考えられる。

5.3 主圧縮ひずみおよび中立軸の検討

せん断圧縮破壊するPCはりのせん断耐力は, 最大曲げモーメント区間のコンクリート圧縮領 域と大きく関係することが指摘されており^{5),6)}, 本検討においてもこの研究成果に着目し検討を 行った。

通常の等価応力ブロックの考え方に基づき算 出した中立軸深さ(X.REC)および最大荷重時にお いて主圧縮ひずみが卓越している深さ(X.PRI)を 表-5に示す。ここで、主圧縮ひずみが卓越し ている深さは、載荷点付近の主圧縮ひずみが 1500 µ 程度以上発生している範囲で、供試体上 面からの距離(図-9参照)である。両者を比較 すると、通常の等価応力ブロックの考え方に基 づき算出した中立軸深さ(X.REC)より主圧縮ひず

みが卓越している深さ(X.PRI)のほうが小さくなった。本検討の範囲においては、その深さ(X.PRI) が全ての解析ケースにおいて 147mm となった (約0.5X.REC)。一部の解析ケースを用いて,さら に要素寸法を小さくし(35mm),主圧縮ひずみが 卓越している深さを同様に検討した。その結果, 主圧縮ひずみが卓越している深さは同じく 0.5X.REC 程度となり要素寸法が主圧縮ひずみの 卓越する深さに及ぼす影響は認められなかった。

主圧縮ひずみが卓越している深さ(X._{PRI})を用 い,通常の等価応力ブロックの考え方に基づき 算出した圧縮応力(σ_{PRI})および解析より得られ た最大荷重時での載荷点付近の圧縮応力(σ FEM)を**表-5**に示す。

通常の等価応力ブロックの考え方に基づき算 出した圧縮応力と解析より得られた圧縮応力の 比率は0.96~1.19の範囲となり概ね圧縮応力を 評価できている。従って,主圧縮ひずみの卓越 する深さ(X._{PRI})が PC はりのせん断耐力に関係 していると思われる。

今回は、導入プレストレス量のみを変化させ てせん断耐荷機構の検討を行った。しかし、断 面形状のほか、コンクリートの圧縮強度(f'c)、 引張鋼材比(pw)、せん断スパン有効高さ比(a/d)、 等のせん断耐力に影響を及ぼす主な要因が変化 した場合の主圧縮ひずみの卓越する深さも検討 する必要がある。今後は、今回の結果を踏まえ 主圧縮ひずみの卓越する深さを比較的簡易に評 価し、PC はりのせん断圧縮耐力評価法を確立し ていきたいと考える。

6. まとめ

- (1)本検討に用いた非線形有限要素プログラム によれば、要素寸法をある程度小さくし、 固定ひび割れモデルを用いることにより実 験結果を概ね評価できた。
- (2) 非線形有限要素解析によっても、導入プレ ストレス量が増加することに伴ってせん断 耐力が増加することおよび変形量が減少す ることを確認することができた。
- (3) 最大荷重時の載荷点付近において,主圧縮 ひずみが卓越している深さを用い,通常の 等価応力ブロックの考え方に基づき算出し

下緑道ス 中立軸 圧縮応力 供試体 プレストレス X._{PRI} X.REC σ_{PRI} σ_{FEM} σ_{PRI} (N/mm^2) (mm)(mm) (N/mm^2) (N/mm^2) $\sigma_{\rm REC}$ 344 147 39 σ pe=5.4 44 1.13 <u>σ p</u>e=6.0 345 147 44 38 1.16 45LCσ pe=8.0 346 147 44 37 1.19 σ pe=10.0 347 147 44 37 1 19 <u>σ pe=5.7</u> 44 284 147 45 0.98 σ pe=6.0 284 147 44 44 1.00 60LC-5 σ pe=8.0 285 147 44 48 0.92 147 σ pe=10.0 285 44 46 0.96

た圧縮応力と解析より得られた圧縮応力は 概ね一致した。従って,主圧縮ひずみが卓 越している深さが PC はりのせん断耐力に 影響するものと思われるが,引張鋼材比等 のせん断耐力に影響を及ぼす主な要因が変 化した場合の検討も必要である。

参考文献

- Mikata,Y., et al. : Effect of Prestress on Shear Capacity of Prestressed Concrete Members, Proceedings of fib Symposium, Prague, pp.331-336, Oct. 1999
- 2) 土木学会:コンクリート標準示方書・〔設計 編〕, pp.60-65, 1996
- 田村聖ほか:高性能軽量コンクリートを用いた大型 PC はりのせん断耐荷特性,コンクリート工学年次論文報告集, Vol.23, No.3, pp.709-714, 2001
- Cervenka Consulting : ATENA Program Documentation Part-1 Theory Revision, May. 2000
- 5) 上田多門ほか: せん断補強筋の無いプレス トレストコンクリート梁のせん断耐力の解 析的研究, プレストレストコンクリート, Vol.33, No.2, pp.60-65, 1991
- 6) 中野清司ほか:プレストレストコンクリート部材のせん断耐力に関する基礎研究,第3 回プレストレストコンクリートの発展に関するシンポジウム論文集,pp.33-38,1992

-642-

表-5 中立軸および圧縮応力