論文 プレキャスト鉄筋コンクリート造柱部材に関する実験研究

菊田 繁美*1 · 千葉 脩*2 · 羽鳥 敏明*3

要旨:本研究は,鋼製スリーブに高強度モルタルを圧入する形式の機械式継ぎ手を用い て柱主筋を柱脚部で接合したプレキャスト鉄筋コンクリート造柱部材に関して,既報¹⁾ ^{,2),3)}で示した中柱及び外柱を対象として行った11体の実験結果を基に曲げ耐力について 検討したものである。柱脚部に配置される機械式継ぎ手用の鋼製スリーブ及び圧入モル タルが曲げ耐力を増大させるメカニズムについて検討し,断面分割法を用いて曲げ耐力 を適切に評価できることを示した。鋼製スリーブが配置される柱脚部では,曲げ圧縮破壊 となる柱頭部とは異なり曲げ引張降伏モードとなる傾向が見られた。

キーワード:プレキャスト,柱部材,機械式継ぎ手,曲げ耐力,コンファインド

1.はじめに

超高層プレキャスト鉄筋コンクリート造建築 物の設計施工システムの開発の一環として行っ てきたプレキャスト鉄筋コンクリート造柱の曲 げせん断実験^{1),2),3)}及び既往の文献⁴⁾では,主筋 が柱脚部において機械式継ぎ手を用いて接合さ れたプレキャスト鉄筋コンクリート造柱部材の 最大耐力は,機械式継ぎ手の無い場合に比べて 大きな値を示すことが報告されている。主筋に 比べて太い鋼製スリーブが主筋継ぎ手用として 柱脚部に配置されることによる影響と考えられ る。本論文は,最大耐力に及ぼす機械式継ぎ手の 影響について実験結果^{1),2),3)}を基に検討したもの である。

2.試験体

試験体の一覧および試験体形状,試験体断面 を表-1,図-1,2に示す。試験体は超高層 建築物の下層部分の中柱および外柱を対象とし た断面寸法が40cm × 40cm で,約1/2 縮尺の11 体である。C01 ~ C06 が中柱,V01 ~ V05 が外柱 を対象としたものである。コンクリートは

	コンクリート	グラウト		主筋		せん断補強筋				軸力比	
試験体名	СВ	G B		S y	Pg		_s wy	Pw		N/(B·D· _{C B})	
	(N/mm^2)	(N/mm^2)		(N/mm ²)	(%)		(N/mm²)	(%)	WI/QD	~N/(A _S · _{S v})	
C01	46.8	75.2	16-D19	456	2.87	4-S6.4@40	892	0.75	1.5	-0.26	
C02	47.8	112.0	12-D19	542	2.15	4-D6@40	729	0.8	1.5	-0.3	
C03	59.0	75.2	12-D19	523	2.15	4-S6.4@40	892	0.75	1.5	-0.3	
C04	65.2	95.8	12-D19	542	2.15	4-D6@40	729	0.8	1.5	-0.32	
C05	67.4	104.7	12-D19	722	2.15	4-S6@30	944	1.07	1.5	-0.3	
C06	103.3	108.5	12-D19	710	2.15	4-D6@30	729	1.07	1.5	-0.27	
V01	47.5	75.2	16+8-D19	456	4.31	4-S6.4@40	892	0.75	1.5	-0.52 ~ 0.7	
V02	47.5	75.2	16+4-D19	523	3.59	4-S6.4@40	892	0.75	1.5	-0.52 ~ 0.7	
V03	60.7	75.2	16+4-D19	523	3.59	4-S6.4@40	892	0.75	1.5	-0.4 ~ 0.7	
V04	65.7	108.5	16+4-D19	542	3.59	4-D6@30	729	1.07	1.5	-0.42 ~ 0.63	
V05	66.3	100.6	12-D19	710	2.15	4-D6@30	729	1.07	1.5	-0.42 ~ 0.68	

表 - 1 試験体一覧

*1 戸田建設㈱技術研究所複合構造プロジェクトチーム 工修 (正会員)

*2 戸田建設㈱技術研究所所長 工修 (正会員)

*3 戸田建設㈱技術研究所複合構造プロジェクトマネージャー

Fc48, Fc60, Fc70, Fc100の4種類, 主筋は SD390, SD490, USD685の3種類である。C01と V01はFc48とSD390, C02とV02はFc48と SD490, C03とV03はFc60とSD490, C04とV04は Fc70とSD490, C05とV05はFc70とUSD685, C06 はFc100とUSD685の組み合わせである。せん 断補強筋にはUSD685とUSD785を用い,曲げ耐 力に対して1.1倍以上のせん断余裕度を有する ように配筋した。全ての試験体ともせん断スパ ン比を1.5とした。試験体は柱と上下スタブの コンクリートを分離して打設した。柱脚部に配 した機械式継ぎ手は,鋼製スリーブ内に高強度 モルタルを注入して主筋を接合する形式であり ,柱脚部の厚さ10mmの部分と同時にモルタルを 圧入した。

水平力は,試験体中央部を反曲点とする逆対 称繰り返し加力として作用させた。軸力は,表 -1に示すように,中柱を対象としたCO1 ~ CO6には軸力比が約0.3の一定圧縮軸力を,外 柱を対象としたVO1 ~ VO5の軸力(N)は水平力 (Q)の1次関数(N=10Q-1000)として圧縮と引 張の変動軸力を作用させた。

3.実験経過

圧縮軸力時においては,中柱及び外柱の各試

験体ともほぼ同様な損傷過程を示し た。中柱及び外柱とも代表的な試験体 C02,C06及びV04について荷重-変形関 係を図-3に示す。縦軸のモーメントは 柱頭と柱脚の平均モーメントである。 各試験体とも 1/200 近辺でせん断ひび 割れと圧壊が発生した後,1/100近辺で 主筋が降伏した。1/100以降にせん断 ひび割れが多数発生し,1/50 で最大耐 力を示した。その後は,柱頭部コンク リートの圧壊およびせん断ひび割れ幅 の拡大と同時に耐力が低下した。最終 的には柱頭の曲げ圧縮破壊の様相を呈 した。

4.主筋の歪度分布

C02, C05, C06 及び V02 の柱頭部及び 柱脚部における主筋の歪度分布を図 -4に示す。各試験体とも主筋歪度が急 激に増大したサイクルにおけるもので ある。スリーブ継ぎ手のある柱脚部と 継ぎ手のない 柱頭部を比較すると, 各 試験体とも圧縮歪度は柱頭部が大きく ,引張歪度は柱脚部が大きかった。断 面分割法では柱頭及び柱脚部の曲げ耐 力がほぼ同じC06においては他の試験 体に比べて柱頭と柱脚の歪度分布の差 が小さかった。コンクリートに比べて 剛性及び耐力の大きい鋼製スリーブが 配置される柱脚部では、圧縮域コンク

柱頭柱脚部主筋の歪度

リートの圧縮歪度が抑制されるため,コンク リートの圧壊が原因となる曲げ圧縮破壊に比べ て曲げ耐力の低下しない引張側主筋の引張降伏 による曲げ引張降伏モードとなる傾向が見られ た。最大耐力時において柱脚部は,圧入モルタ ルの圧壊が観察されたものの柱頭部に比べて圧 壊による損傷は軽微であった。

V04における引張側と圧縮側の主筋について 高さ方向の歪度分布を図-5に示す。最大 モーメント時部材角1/50における圧縮側主筋 はスリーブ直上部が約13000µと最も大きな歪 度であったが,引張側主筋のスリーブ直上部は 約2300µで降伏しておらずスリーブ直上部は 約9000µと最も大きな歪度であった。スリー ブ直上部においても柱頭部と同様な歪度分布で あると推察されるが,柱頭部に生じた曲げ圧縮 破壊時のコンクリートの圧壊は観察

5. せん断補強筋の拘束効果

C02 及び C05 の柱頭及び柱脚にお

けるせん断補強筋の加力直交方向の

歪度を図-6に示す。加力方向のせ

ん断補強筋はせん断力に抵抗するが

,加力直交方向ではコンファインド

を評価できるものと考えた。両試験体とも部材 角が増大するにつれて引張歪度が増大した。柱 頭部では中子筋は外周帯筋と同等以上の歪度を 示したが、柱脚部では逆に外周帯筋の歪度の方 が大きな歪度を示した。柱頭部と柱脚部を比較 すると外周帯筋はほぼ同じ歪度であったが、断 面中央部のコンクリートを拘束する中子筋は柱 頭部に比べて柱脚部の歪度が小さかった。これ は、柱脚部には強度と剛性の大きいスリーブと 高強度のモルタルが用いられるために小さな圧 縮域で抵抗でき、柱頭部に比べて中立軸が圧縮 縁に近づく曲げ引張降伏モードとなったことが 原因と考えられる。

各試験体について,最大耐力を示した1/

図 - 7 ヒンジ回転角(部材角1/50rad.時)

			C01	C02	C03	C04	C05	C06	V01	V02	V03	V04	V05
最大せん断力実験値 _e Q _∪ (kN)		921	916	933	986	1176	1308	991	1034	1078	1255	1146	
せん断耐 力計算値 (kN)	_C Q _{SU0}	(Rp=0)	956	911	1085	1079	1290	1471	963	963	1101	1180	1185
	計算/実験		1.04	0.99	1.16	1.09	1.10	1.12	0.97	0.93	1.02	0.94	1.03
	_C Q _{SU1} (F	Rp=0.01)	780	779	930	914	1032	1243	789	789	942	1011	1014
	計算/実験		0.85	0.85	1.00	0.93	0.88	0.95	0.80	0.76	0.87	0.81	0.89
最大モーメント実験値 _。 M _U (kN·m)		582	577	595	612	746	839	643	664	692	807	738	
曲げ耐力 計算値 (kN・m)	柱頭	NMU	503	476	543	567	624	846	505	516	609	617	608
	柱脚	sМu	529	515	558	621	653	850	620	621	682	714	676
		_G М _U	593	620	615	704	756	852	727	723	723	868	823
	_c M _{U1}	/ _e M _U	0.89	0.87	0.93	0.98	0.86	1.02	0.88	0.86	0.94	0.83	0.88
	_C M _{U2}	/ _e M _U	0.94	0.95	0.97	1.04	0.92	1.01	0.96	0.93	0.96	0.92	0.97
	_c M _{U3}	/ _e M∪	1.07	1.08	1.13	1.22	1.03	1.27	0.97	0.96	1.09	1.00	1.04

表 - 2 最大耐力

・せん断耐力の計算値は鉄筋コンクリート造建物の靱性保 証型耐震設計指針・同解説の式による。

・実験の最大モーメントは下式により求めた。 。M_U=(_QQ_U - N·R)h/2 N:軸力 R:部材角

・曲げ耐力の計算値はコアコンクリートをNewRCで提案されたコンファインドコンクリートとした断面分割法による。

 $_{\rm C}M_{\rm Ui} = (_{\rm C}M_{\rm UT} + _{\rm C}M_{\rm UB})/2$

cM{u1} :高さh_gで _sM_uの時 _cM_{u2} :高さ0で _gM_uの時

cM{U3} :高さh_sで _NM_Uの時

 $_{C}M_{Ui} = (_{C}M_{UT} + _{C}M_{UB})/2$

50rad.におけるヒンジ回転角を図-7に示す。 ヒンジ回転角は図に示すように、柱頭及び柱脚 部の左右の変位計測値を用いて計算した柱せい の半分の範囲における平均的な回転角である。 ほとんどの試験体において柱頭の回転角が柱脚 部に比べて大きくなっており,柱頭の方が大き な損傷を受けて曲げ剛性が小さくなったためと 考えられる。各試験体で最大耐力を示した1/50 における柱頭部のヒンジ回転角の下限値は約 0.01rad.であった。

7.実験結果

各試験体の最大せん断力及び最大モーメント に関する実験値と計算値の比較を表 - 2 及び 図-8,9に示す。せん断耐力の計算値は,鉄 筋コンクリート造建物の靱性保証型耐震設計指 針・同解説の式を用い,曲げ耐力の計算値は, 断面分割法を用いて求めた。断面分割法におい て,コアコンクリートはNewRC⁵⁾で提案された せん断補強筋よるコンファインドコンクリート の応力 - 歪関係を用いた。柱脚部の算定断面は 3種類であり,スリーブの上下面及び下スタブ 上面について算定した。各境界面において強度 の異なる材料が接している場合には,強度の小 さい材料の応力 - 歪度関係を用いた。スリーブ 下面位置ではスリーブ断面部分を圧入モルタル とした。下スタブ上面位置では実験時にスタブ コンクリートが圧壊していなかったこと,及び スタブ内では3軸圧縮応力状態で強度が増大す ることを考慮して柱断面を圧入モルタルとした。 圧入モルタルの応力 - 歪度関係は同強度のコン クリートと同じものとした。

図-7に示した様に,最大耐力を示した1/ 50rad.における柱頭部のヒンジ回転角の下限値 は約0.01rad.であったことから,降伏以降のせ ん断耐力としてはヒンジ回転角(Rp)を0.01rad. とする若干大きめの計算値とした。ヒンジ回転 角を0.01rad.とした場合のせん断耐力は,全て の試験体で計算値が実験値を下回っており ,∀02では計算値は実験値の0.76倍と小さかっ た。しかし,全試験体とも明瞭なせん断破壊は 観察されておらず,せん断耐力の計算値は実験 値を過小評価しているものと考えられる。

曲げ耐力について3種類の曲げ破壊モードの 計算値(_cM_{U1},_cM_{U2},_cM_{U3})を比較すると,C06を除 いてスリーブ下面に対する耐力(_cM_{U1})が最も小 さく,次が下スタブ上面に対する耐力(_cM_{U2})で あり,スリーブ上面に対する耐力(_cM_{U3})が最も 大きかった。C06はコンクリートと圧入モルタ ルがほぼ同じ強度であったため,_cM_{U1}と_cM_{U2}はほ ぼ同じ値となり,両者とも実験値にほぼ一致し た。**図 - 9**に示すように_cM_{U1}は曲げ耐力の下限 値を評価でき,_cM_{U2}は10%以内の誤差で曲げ耐力 を評価できた。圧縮域におけるスリーブ直下の モルタルは,3軸圧縮応力状態でスリーブによ り支圧されており,本計算モデルよりも強度が 上昇しているものとも考えられ,_cM_{U1}は曲げ耐 力を過小評価している可能性がある。

8.まとめ

鋼製スリーブに高強度モルタルを圧入する形 式の機械式継ぎ手を用いて柱主筋を柱脚部で接 合したプレキャスト鉄筋コンクリート造柱部材 の曲げせん断実験結果から以下の結論を得た。

柱脚部の圧入モルタル及び機械式継ぎ手用ス リーブを考慮した断面分割法を用いて曲げ耐力 を適切に評価できた。

コンクリートに比べて剛性及び耐力の大きい 鋼製スリーブが配置される柱脚部では,圧縮域 コンクリートの圧縮歪度が抑制されるため,コ ンクリートの圧壊が原因となる曲げ圧縮破壊に 比べて曲げ耐力の低下しない引張側主筋の引張 降伏による曲げ引張降伏モードとなる傾向が見 られた。

参考文献

 1)菊田繁美ほか:プレキャスト鉄筋コンク リート造柱部材に関する実験研究(その1) (その2),日本建築学会大会,構造

図-9 最大モーメント

, pp. 459-462, 1994.9

- 2)山内茂一ほか:超高強度材料を用いた鉄筋コンクリート造の柱部材に関する実験研究(その3)(その4),日本建築学会大会,構造,pp.191-194,2000.9
- 3) 羽鳥敏明ほか: プレキャスト鉄筋コンクリート 造柱部材に関する実験研究(その3)(その4), 日本建築学会大会,構造 ,pp.399-402,2001.9
- 4)伊藤一隆ほか:高軸力を受けるモルタル充填式鉄筋
 継手を有したプレキャスト鉄筋コンクリート柱の構造性能
 に関する実験研究(その1)(その2),日本建築
 学会大会,構造 ,pp.377-380,1998.9
- 5) 平成4年度「NewRC研究開発概要報告書」(財) 国土開発技術研究センター, 1993.3