論文 接着界面の状態を考慮した連続繊維シート補強 RC 部材の性能評価

吉田 隆浩*1·森川 英典*2·小林 秀惠*3

要旨:接着樹脂の弾性率の相違などに着目した研究¹⁾やコンクリートの下地処理方法に着目 した研究²⁾において,連続繊維シート補強 RC 部材の挙動は接着界面の状態に影響されるこ とが確認されている。本研究では,不陸修整材,プライマー,コンクリート強度,繊維シー トの積層数などに着目して実験的な検討を行った。その結果,不陸修整材の施工の有無によ って,補強性能,付着性能,はく離挙動などが異なることや不陸修整材に着目した連続繊維 シート補強 RC はりの曲げ載荷試験と連続繊維シートとコンクリートとの付着試験の試験結 果において傾向が異なることなどがわかった。

キーワード:不陸修整材、プライマー、連続繊維シート、コンクリート強度、引張鉄筋比

1. はじめに

現在,コンクリート構造物の補強工法として, 連続繊維シート補強工法が注目され,各機関で 盛んに研究が行われている。本研究では,連続 繊維シート補強 RC はりの曲げ載荷試験と連続 繊維シートとコンクリートとの付着試験を行い, 不陸修整材(以下,パテとする)などの接着界 面に使用される材料,連続繊維シートの積層数, コンクリート強度および引張鉄筋比などの要因 が RC 部材の補強性能および付着性能に及ぼす 影響の評価を行った。

2. 実験概要

2.1 連続繊維シート補強 RC はりの曲げ載荷 試験

(1) 供試体および試験方法

供試体の概略図を図-1 に示す。供試体は, 断面が 150×150mm, 全長が 1400mm, スパン 1200mm の RC はりとし, 連続繊維シート補強 を施す供試体については, 幅 75mm, 長さ 1100mm の連続繊維シートを供試体下面に貼り 付けた。配筋は, せん断破壊しないように供試

*1 神戸大学大学院 自然科学研究科建設学専攻(正会員)*2 神戸大学助教授 工学部建設学科 工博(正会員)

*3 神戸大学技術官 工学部建設学科(正会員)

体中央を除いて, D6 のせん断補強筋を 60mm 間隔で配置した。実験は,4 点曲げで載荷し, RC はりが圧縮破壊した時点で終了した。供試 体の養生については,打設・脱型後、材齢2週 まで湿潤養生を行い,コンクリート表面の汚れ 等を取り除くためにディスクサンダーで連続繊 維シート接着面の処理を行った。そして,プラ イマー,パテの順に施工し,材齢3週で連続繊 維シートをエポキシ樹脂により含浸・接着した。 その後,材齢4週まで室内にて養生を行い,載 荷試験を行った。なお,プライマーを2回施工 する場合に関しては,1 回目の施工が指触乾燥 してから2回目を施工した。

-						
供封体权 司建士姓姓		目標コンクリート強度	プライマー パテ		雄继ミ□ 困粉	
共武 半右	51 扳土 买肋	(N/mm^2)	(塗布回数)	弾性率	塗布厚さ(mm)	減雄シート唐致
RC1	D13	26.0	1	低弾性率	1	1
RC2	D13	26.0	2	低弾性率	1	1
RC3	D13	26.0	1	高弾性率	1	1
RC4	D13	26.0	1	低弾性率	2	1
RC5	D13	26.0	1	高弾性率	2	1
RC6	D13	20.0	1	低弾性率	1	1
RC7	D13	40.0	1	低弾性率	1	1
RC8	D13	26.0	1	低弾性率	1	2
RC9	D13	26.0	1	-	-	2
RC10	D10	26.0	1	低弾性率	1	1
無補強	D13	26.0	-	-	-	-

表-1 RC はりの曲げ載荷試験要因

表-5 連続繊維シートの付着試験要因

	目標コンクリート強度	プライマー			
1.兴武1本名	(N/mm^2)	(塗布回数)	弾性率	塗布厚さ(mm)	繊維シート唐毅
B1	26.0	1	低弾性率	1	1
B2	26.0	2	低弾性率	1	1
B3	26.0	1	高弾性率	1	1
B4	26.0	1	低弾性率	2	1
B5	26.0	1	高弾性率	2	1
B6	20.0	1	低弾性率	1	1
B7	40.0	1	低弾性率	1	1
B8	26.0	1	低弾性率	1	2
B9	26.0	1	-	-	2

(2) 試験要因および使用材料

供試体の試験要因を表-1 に示す。要因につ いては、パテの弾性率(低弾性率、高弾性率の 2 水準, 表-4 参照)および塗布厚さ (1mm, 2mm の 2 水準), コンクリート強度 (20, 26, 40(N/mm²)の3水準),引張鉄筋比の相違(図-1参照),連続繊維シート層数,パテ施工の有無, プライマーの塗布回数である。実験で使用した 主な材料の物性値を表-2,表-3,表-4 に示 す。

2.2 連続繊維シートとコンクリートとの付 着試験

(1) 供試体および試験方法

供試体の概略図を図-2 に示す。供試体は, 土木学会「連続繊維シートとコンクリートとの 付着試験方法(案)」3)に準拠した。供試体は, 断面が 100×100mm, 全長が 300mmのコン クリートブロックを2つで一対とする。中心軸 には引張荷重伝達用に軸を一致させた2本の鋼 ボルトをあらかじめ配置した。試験区間は、供 試体の中央から片側一方で200mmとし、試験 区間と対称側には、定着のために幅 200mmの 連続繊維シートをコンクリートブロック周方向 に接着して、この区間のシートはく離を防止し

た。また、試験体中央部にはコンクリートの角 欠けを防止するために非付着区間を設けた。

(2) 試験要因および使用材料

供試体の試験要因を表-5 に示す。実験で使 用した主な材料の物性値は、2.1(2)で示した

表-2 連続繊維シートの材料特性値

繊維シート	繊維目付	設計厚さ	引張強度	引張弾性率
の種類	(g/m^2)	(mm)	(N/mm^2)	(N/mm^2)
炭素繊維	300	0.167	3.48×10^{3}	2.30×10^{5}

表-3 エポキシ樹脂の材料特性値

圧縮強さ	圧 縮 弾 性 率	引張強さ	引 張 弾 性 率
(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)
92.8	3.20×10^{3}	50.9	3.65×10^{3}

表-4 パテの材料特性値

図-2 供試体の概略図

表-6 RC はりの曲げ載荷試験結果一覧

供試体名	コンクリート 圧縮強度 (N/mm ²)	コンクリート 引張強度 (N/mm ²)	引張鉄筋 降伏荷重 (kN)	部材降伏 荷重 ^{*1} (kN)	最大荷重 (kN)	無補強供試体 に対する 耐力比	連続繊維シート はく離時の荷重 (kN)	連続繊維シート はく離時のたわみ (mm)	部材吸収 エネルギー ^{*2} (kN・mm)
RC1	26.0	2.36	43.1	44.1	50.4	1.24	48.4	9.77	56.2
RC2	26.0	2.36	43.1	44.1	48.5	1.19	48.1	8.78	41.2
RC3	26.0	2.36	48.5	44.6	50.0	1.23	48.8	8.34	52.5
RC4	26.0	2.36	44.1	45.6	52.5	1.29	52.0	9.72	72.6
RC5	26.0	2.36	44.1	45.6	51.6	1.27	51.0	9.29	68.4
RC6	21.1	1.90	42.2	44.1	49.8	1.23	49.7	10.7	_
RC7	41.5	3.13	41.7	44.6	54.9	1.35	54.2	12.4	-
RC8	27.8	2.64	52.5	47.6	58.5	1.44	58.5	7.99	77.9
RC9	27.8	2.64	45.1	47.6	54.2	1.33	52.7	7.12	52.5
RC10	27.8	2.64	27.9	33.3	41.7	1.03	41.1	11.5	_
無補強	26.9	2.22	36.8	38.1	40.6	_	_	_	_

※1:荷重-中央たわみ関係において、急激に剛性の変化する荷重と定義する

※2:補強供試体の荷重-中央たわみ曲線によって囲まれる面積から無補強供試体の荷重-中央たわみ曲線によって囲まれる面積を差し 引いた値

ものと同様である。

3. 実験結果および考察

3.1 連続繊維シート補強 RC はりにおける 補強性能および付着性能の評価

試験結果の一覧を表-6 に示す。連続繊維シ ート補強を施した供試体は,すべて引張鉄筋が 降伏した後も連続繊維シートが引張力を負担す ることによって,鉄筋比が同じ RC1~RC9 につ いては,無補強供試体と比較して 19~44%の耐 力増加が認められた。なお,破壊形態は,すべ ての供試体ではく離破壊であった。ここで,パ テを施工した供試体は,すべてパテと連続繊維 シートが一体となってはく離したことから,付 着性能の評価に用いる付着応力については,パ テを連続繊維シートと等価な剛性に置き換えて 式(1)により付着応力を求めた。

$$\tau(x) = \left(E_f t_f + E_p t_p\right) \frac{d\varepsilon_f(x)}{dx} \tag{1}$$

ここで,

τ(x):付着応力

t_f, t_p:繊維シートおよびパテの厚さ

ε_f(x):繊維シートのひずみ

ここでは,**表-6**に示す各段階の荷重,部材 吸収エネルギーを指標に補強性能の評価を行う。

(1) プライマーの塗布回数の影響

表-6から, RC2 は RC1 と比較して, 部材吸 収エネルギーが小さく, プライマーを2回施工 することにより、補強性能が低下する傾向が認められる。この原因としては、RC1と比較して、 RC2のシートのはく離が表層のモルタルを引きちぎらずプライマー層間で起こっている傾向があり、付着が低下したことによるものと考えられる。

(2) パテの弾性率および塗布厚さの影響

表-6 に示す RC1, RC3, RC4 および RC5 の部材吸収エネルギーの値から,低弾性率のパ テを用いた RC1 の方が,また,塗布厚さが大き い RC4 の方が,補強性能が高いことがわかる。 各供試体の最大荷重時の連続繊維シートひずみ 分布を図-3 に示す。低弾性率のパテを施工し た供試体 RC1, RC4 の方が,連続繊維シートに 発生しているひずみ値は大きく,繊維シートが より大きな引張力を負担したことで,補強性能 に有意な差が現れたと考えられる。

(3) コンクリート強度の違いによる影響

図-4に RC1, RC6 および RC7 の荷重-中央 たわみ関係を示す。RC1 と RC6 に顕著な差はな いものの, コンクリート強度が大きい RC7 は部 材が降伏するまでの剛性も大きく, 耐力, 連続

繊維シートはく離時の荷重およびたわみも大き い。RC1 と RC6 の部材降伏時の付着応力分布を 図-5 に示す。載荷点直下近傍における RC6 の 付着応力は相対的に大きい傾向がある。部材降 伏時以降,はり中央部付近においてはく離が進 展し始めることから,載荷点直下近傍における 付着応力が大きかった結果, RC1 と RC6 は補 強性能に差が生じなかったと考えられる。

(4) 連続繊維シートの積層およびパテの影響

全国上下水道エポキシ工事業協会が示してい る炭素繊維シート補強工法 4)や阪神高速道路公 団⁵⁾などが示しているように,実施工では,プ ライマーをコンクリート表面に施工した後に, パテを施工し、連続繊維シートを貼り付けて補 強するという方法をとっていることが多い。そ こで、本研究においてはこれと同様な施工方法 で作製した供試体で評価していく必要があると 考えた。図-6 に RC1, RC8, RC9 の荷重-中 央たわみ関係を示す。RC8は、RC9と比較して 部材吸収エネルギーが大きく,補強性能が高い ことがわかる。積層したいずれの供試体も部材 の剛性が向上したことにより, 連続繊維シート はく離時のたわみが減少していることが確認で きる。図-7 に各供試体の部材降伏時から最大 荷重時までのほぼ中間に位置する荷重ステップ の付着応力分布を示す。最大荷重時の付着応力 分布に大きな差はないが、RC8は、部材が降伏 してからはく離するまでの付着応力が相対的に 大きく,その結果,補強性能が高くなったもの と考えられる。

(5) 引張鉄筋比の違いによる影響

図-8にRC1とRC10の荷重-中央たわみ関 係を,図-9に荷重-中央引張鉄筋ひずみ関係 を,図-10に荷重-中央繊維シートひずみ関係 を示す。曲げひび割れが発生するまでは同様の 挙動を示しているが、コンクリートに曲げひび 割れが発生してから、RC10の部材剛性の低下 が大きく、同時に、引張鉄筋に生じるひずみが

急激に大きくなっている。同様に,RC1と比較 して,シートに発生するひずみも大きくなって いく様子がわかる。図-11に各供試体の引張鉄 筋降伏荷重および最大荷重を示した時の連続繊 維シートひずみ分布を示す。RC10において, 引張鉄筋降伏後,繊維シートがより大きな引張 力を負担している様子がわかる。これは,早い 段階で引張鉄筋が降伏するために,より早い段 階から連続繊維シートが大きな引張力を負担し ているためと考えられる。この観点からは,引 張鉄筋比が小さくなると,連続繊維シートの補 強効果がより発揮されるものと考えられる。

3.2 連続繊維シートとコンクリートとの付 着試験による付着性能の評価

試験結果の一覧を**表-7**に示す。ここでは, 最大荷重,連続繊維シートひずみ,付着応力を 指標に付着性能の評価を行う。

(1) プライマーの塗布回数の影響

B1, B2 の連続繊維シートひずみ分布を図-12, 図-13 に示す。供試体 B2 は, B1 と比較し て,はく離するまでのひずみ分布において,付 着抵抗領域が狭く,また,発生しているひずみ 値も小さい。表-7から B2 は, B1 と比較して, 耐力も低下していることからプライマーを2回 施工すると付着性能が劣る傾向にあるといえる。

(2) パテの弾性率および塗布厚さの影響

表-7 から低弾性率のパテを用いた B1, B4 よりも高弾性率のパテを用いた B3, B5 の方が, 耐力は大きくなる傾向にあるといえる。また, 塗布厚さが小さい方が最大荷重は大きい。図-14 に供試体 B3 および B5 の最大荷重時の付着

表-7 連続繊維シートの付着試験結果一覧

供試体名	コンクリート 圧縮強度 (N/mm ²)	コンクリート 引張強度 (N/mm ²)	最大荷重 (kN)
B1	27.8	2.64	24.5
B2	26.0	2.36	22.3
B3	26.0	2.36	25.0
B4	26.0	2.36	23.0
B5	26.0	2.36	23.8
B6	21.1	1.90	23.8
B7	41.5	3.13	28.2
B8	27.8	2.64	33.8
B9	27.8	2.64	30.4

応力分布を示す。図に示すように、パテの塗布 厚さが 2mm の B5 は、付着応力がより端部に分

図-13 連続繊維シートひずみ分布(供試体 B2)

散している傾向がある。このことから、付着長 (試験区間)が200mmである本研究の付着試 験では付着長が足らず、耐力が低下したものと 考えられる。

図-14 付着応力分布(パテの塗布厚さの影響)

(3) コンクリート強度の違いによる影響

図-15 に付着試験における最大荷重とコン クリート強度の関係を示す。佐藤らの研究⁶に おいては、コンクリート強度の 0.2 乗に比例す るとされており、パテを施工した本研究におけ る実験結果も同様となった。

図-15 最大荷重とコンクリート強度の関係

(4) 連続繊維シートの積層およびパテの影響

表-7 から、繊維シートを積層すると連続繊 維シートの引張剛性が大きくなることにより、 最大荷重は大きくなる。また、パテを施工した B8の方が、パテを施工していない B9と比較し て約11%の耐力増加が認められ、付着性能が高 いと考えられる。

4. まとめ

本研究で得られた結果を以下に示す。

- (1) パテ施工の有無によって連続繊維シート 補強 RC 部材の補強性能および付着性能 は異なる。
- (2) プライマーを指触乾燥後再び施工すると、 補強性能および付着性能は低下する傾向 にある。
- (3) 本研究の付着試験において、パテの塗布 厚さを2mmにした場合、付着長が足らず、 付着性能が低下し、RC はりの曲げ載荷試 験結果との整合性が得られなかった。
- (4) コンクリート強度の相違をパラメータとした RC はりの曲げ載荷試験における性能評価では、コンクリート強度との相関性が見られなかった。
- (5) 連続繊維シートを積層すると、連続繊維 シートの引張剛性が大きくなり、耐力の 向上が認められる。また、向上の割合は パテを施工した方が大きい。
- (6) 連続繊維シート補強 RC はりにおいて引 張鉄筋比が小さくなると,連続繊維シー トによる補強効果がより発揮される。

参考文献

- 杉山裕樹ほか:接着樹脂の材質に着目した連 続繊維補強 RC はりの付着および耐荷性能の 評価,コンクリート工学年次論文集, Vol.22, No.3, pp.289-294, 2000.7.
- 2) 岸徳光ほか: FRP シートで曲げ補強した RC 梁の曲げ付着特性に関する実験的研究,構造 工学論文集, Vol.45A, pp.1399-1410, 1999.3.
- 3) 土木学会:連続繊維シートを用いたコンクリ ート構造物の補修補強指針, pp.73-82, 2000.7.
- 4) 全国上下水道エポキシ工事業協会:炭素繊維 ライニング補強工法,1999.7.
- 5) 阪神高速道路公団: CF シートを用いた RC 床 版補強要領(案), pp.8-11, 1999.3.
- 6) 佐藤靖彦ほか:炭素繊維シートの付着機構に
 関する基礎研究,土木学会論文集, No.648/V-47, pp.71-87, 2000.5.