論文 型枠解体時期が構造体コンクリート強度に及ぼす影響

河上 浩司^{*1}·西本 好克^{*2}·树田 佳寬^{*3}

要旨: 型枠解体時期が 高強度コンクリートを使用した構造体の内部強度分布に及ぼす影響 を検討するため 模擬試験体による確認実験を行った。結合材種類は ,普通ポルトランドセメ ント ,低熱ポルトランドセメント ,そして低熱ポルトランドセメントにシリカフュームを混合 したものである。実験の結果 ,普通ポルトランドセメントでは ,初期高温履歴による強度低下 と乾燥による部材表面の強度低下を確認できた。低熱ポルトランドセメントでは ,温度履歴の 影響は見られなかったが 乾燥による強度低下を確認できた。一方 ,シリカフュームを混合した 場合は強度低下を確認できなかった。

キーワード: 高強度コンクリート 結合材種類 型枠解体材齢,強度発現

1. はじめに

構造体に打設されたコンクリートの圧縮強度 は 部材の高さ方向や水平方向で一様でないこと が知られている。特に 水平方向では 初期の温度 分布や表面からの乾燥の影響で 強度変動を生じ る可能性が高いにもかかわらず 水平方向の強度 分布に関する研究報告は少ない¹⁾。

これまでに筆者らは、乾燥の影響が小さい部材 中心部の温度履歴と強度発現に着目し、普通セメ ントでは、最高温度が高いほど長期強度増加が阻 害されること、低熱セメントとシリカフュームの 組み合わせでは、最高温度の影響は少なく、積算温 度で強度発現を評価できることを確認した^{2),3)}。

本研究では 構造体内の水平方向におけるコン クリートの強度分布を把握するために 乾燥開始 材齢の異なる模擬試験体を作製し,強度確認を 行った。その結果より,従来の温度履歴に加え,乾 燥条件がコンクリートの強度発現や部材内の強 度分布に与える影響について検討を行った。

- 2. 実験方法
- 2.1 実験概要

実験の要因と水準を表 - 1 に示す。今回の実 験では主な検討要因を 結合材種類(3種類)乾 燥開始(型枠解体)材齢(4材齢),および深さ方向 (3種類)として圧縮強度発現の比較を行った。

使用材料を表 - 2 に,配合計画を表 - 3 に示 す。配合名は、結合材種類と水結合材比との組み 合わせで示す。化学混和剤は L40ではAE減水剤を 使用し,その他では高性能AE減水剤を使用した。

結合材種類	普通ポルトランドセメント(N) 低熱ポルトランドセメント(L) L + シリカフューム(LSF)	3 種類	_	セ
水結合材比	30% , 40% 1)	2 種類		
作製供試体	標準養生,封かん養生,コア	3 種類	_	:
型枠解体材齢	1,3,5,7日	4 材齢	_	/
試験材齡	7,28,91日 ²⁾	3 材齢		4
コア採取位置	端面から75mm,225mm,375mm	3箇所	_	R
	¹⁾ 40%はLセメントのみ ²⁾ 標準養生は材齢28日のみ			米
			-	

表 - 1 実験の要因と水準

表 - 2 使用材料

	18 - 2	这一时代
	普通ポルトランド	密度3.15g/cm ³
セメント	セメント	比表面積3300cm ² /g
ビハノト	低熱ポルトランド	密度3.24g/cm ³
	セメント	比表面積3240cm ² /g
:日千□++	シリカフュール	密度2.2g/cm ³
儿子中小小	<u></u>	比表面積 22.6m ² /g
细母な	川砂(由奴川帝)	表乾密度2.61g/cm ³
細月初	川沙(尨芯川庄)	吸水率2.68% FM 2.75
₩₽++	硬質砂岩砕石	表乾密度2.65g/cm ³
他育的	(葛生産)	吸水率0.97% 実積率58.9%
混和剤	AE減水剤,高性能A	E減水剤(ポリカルボン酸系)

*1 三井住友建設(株) 技術研究所 工修 (正会員)

*2 三井住友建設(株) 技術研究所 (正会員)

*3 宇都宮大学教授 工学部建設学科 工博 (正会員)

なお、LSF30におけるシリカフュームの置換率は、質量で10%とした。

2.2 試験体作製方法

(1) 試験体形状

今回の実験において、製作した模擬試験体の形 状を図 - 1に示す。模擬試験体は、大断面の柱や 壁の一部を切り出した部分を模擬したもので、寸 法は900×300×210mmである。両端面以外の4 面は、ビニールと厚さ150mmの断熱材(発泡スチ ロール)で覆い、乾燥と放熱を防止した。両端面に は鋼製型枠を用い、両端面からのみ放熱させてい る。端面の型枠は、表 - 1に示した所定の材齢で 解体し 20 60%RHに制御された養生室内で試験 材齢まで静置、乾燥させた。なお、試験体中心部ま で乾燥の影響が及ぶことはほとんどないと仮定 し、両端面の型枠解体材齢を変えることで、一体 の試験体で2種類の解体材齢における強度確認 を行った。

試験体内部の温度履歴は 図 - 1 に示すように 試験体断面の中心線に沿った位置に熱電対を配 置(T1 ~ T4)し測定を行った。

(2) 作製手順

試験手順の概要を図 - 2 に示す。コンクリート は,100Lの強制2軸ミキサで練り混ぜを行った。 試験体は,各結合材で解体材齢が1日と3日とな る3試験体をシリーズ1,解体材齢が5日と7日 の3試験体をシリーズ2として製作を行った。同 ーシリーズ内の3試験体のコンクリート品質を 一定とするため,70Lずつ3回に分けて練り混ぜ たコンクリートを傾胴ミキサで混合して,フレッ シュ試験や試験体製作に使用した。

(3) コア供試体

コア供試体は、JISA 1107に準じて図 - 1 に示 す位置から12本を湿式のコアドリルを用いて採 取した。コア供試体は、試験体端面から2本ずつ を一組とし、外側から表面、中間、そして中心と称 する。コア採取後は、研磨による成形を行い、JISA 1108に準じて圧縮試験を行った。以後、コア供試 体は型枠解体材齢と採取位置とで区別する。

3. 実験結果および考察

3.1 温度履歴

各試験体で測定された材齢7日までの温度履 歴を図 - 3に示す。また,コア採取位置での推定 最高温度とその到達時間を表 - 4に示す。ここ で,コア採取位置での推定温度履歴は,コア採取 位置を挟む2つの熱電対の測定結果を平均して 算出した。

試験体内のコンクリート温度は 結合材種類や 結合材水比に関係なく打設後5~6日でほぼ室

温まで低下し、以降は20 前後で推移した。試験 体中心部(T4)の最高温度は N30では70 となっ たが L40 L30 そしてLSF30では45~50 であっ た。試験体中心部における温度上昇量を結合材 100kgあたりで評価すると N30では8.2 となり, その他ではどれも4.2 程度であった。

表 - 4より 表面コアと中心コア採取位置との 温度上昇量の差は N30で約20 L30で約10 , そしてL40とLSF30では9 弱となった。また 両 コア採取位置での最高温度到達時間の差は N30 では3時間となったが他は1.5時間ないし2時 間と短い。

3.2 圧縮強度

圧縮試験結果を表 - 5 に示す。L30では試験体 間で空気量が異なったため 別途行った試験に基 づいて 空気量による圧縮強度の補正を行った。

なお、コア供試体の強度発現性状は 試験体製 作シリーズごとに 対応する封かん養生28日強度 を基準にした強度比として評価を行う。

(1) 普通ポルトランドセメント(N30)

N30試験体のコア強度発現について 強度比の 評価した結果を図 - 4 ならびに図 - 5 に示す。 図 - 4には封かん養生の強度発現を併せて示し, 主に材齢と強度発現について 封かん養生との比

表 - 4 温度測正結果												
	피스	初期温度	最高	高温度()	到達時間(h)						
	ᄟᅟᅳ	()	表面	中間	中心	表面	中間	中心				
	N30	24.7	48.4	61.1	67.3	13.5	15.0	16.5				
	L40	25.3	34.9	40.7	43.6	16.0	16.0	17.5				
	L30	25.7	37.1	44.4	47.9	14.5	15.5	17.5				
	LSF30	24.8	34.4	40.1	43.1	15.0	16.0	17.0				

較から検討を行う。図 - 5は 解体材齢別に各試験 材齢での強度比を示したもので 部材内の強度分 布傾向を検討する。図中には 材齢7日と91日に おける部材内の強度分布傾向を直線で示した。な お その他の試験体についても 上記の2つの手法 で検討を行う。

図 - 4からコア強度発現を検討すると 材齢7 日では 強度比は封かん養生強度を若干下回る程 度である。しかし、その後のコア強度増加量は小さ く 材齢28日、91日では封かん養生強度を大きく 下回る。また、コア強度のばらつきは 材齢7日か ら28日にかけて一度小さくなるが 材齢91日で はばらつきがまた大きくなる試験体がみられる。

		シリーズ1圧縮強度(N/mm ²)							シリーズ2圧縮強度(N/mm ²)								
配合	材齢 (日)	標準	封緘	模擬試験体コア					模擬試験体コア								
ᄟᆸ				1日解体		3日解体		標準	封緘		5日解(4		7日解位	4		
				表面	中間	中心	表面	中間	中心			表面	中間	中心	表面	中間	中心
	7		58.9	56.2	56.8	54.7	48.2	51.0	55.5		62.1	55.6	54.5	51.4	57.0	55.1	60.8
N30	28	70.5	67.7	54.3	53.8	57.3	52.7	55.1	53.4	72.7	70.3	59.3	59.9	57.2	62.3	59.9	59.7
	91		75.1	61.2	62.1	63.2	70.7	59.1	64.8		81.9	71.0	65.4	65.3	71.2	65.3	62.1
	7		17.4	21.0	23.1	26.2	22.0	26.2	25.7		17.7	20.3	25.7	25.8	20.5	25.3	27.2
L40	28	50.3	43.1	41.5	48.2	45.7	38.3	45.5	46.4	48.4	43.3	41.4	42.9	41.6	36.9	44.6	44.0
	91		61.0	56.1	67.9	65.6	58.5	65.0	67.0		58.0	55.1	57.8	58.7	55.8	59.3	59.4
	7		29.2	38.7	43.8	43.6	37.5	42.8	44.5		33.6	37.6	45.5	44.5	38.2	43.5	43.3
L30	28	68.2	54.2	55.6	55.9	56.9	56.9	59.7	60.1	72.5	56.5	57.4	57.7	57.0	55.7	55.1	55.5
	91		72.4	67.4	70.1	68.8	70.0	73.4	74.0		76.4	73.1	70.5	72.4	73.1	72.3	72.5
	7		43.0	51.4	59.4	56.8	45.6	55.8	53.0		41.6	53.9	60.0	67.2	54.0	60.3	67.1
LSF30	28	75.7	75.3	69.9	69.8	67.0	68.5	66.5	66.9	80.2	80.2	81.4	82.3	75.8	84.4	80.5	75.6
	91		94.3	87.5	85.6	86.9	80.5	81.0	80.2		102.9	96.3	98.1	96.3	104.1	102.9	101.0

表 - 5 圧縮強度試験結果

図 - 5より 強度分布の傾向を直線の勾配から 評価すると 材齢7日では勾配に統一性が見られ ず 部材内の強度分布傾向を判断するのは難しい。 一方 材齢91日における部材内の強度分布を評価 すると 解体材齢が3日以降の試験体では 直線が 右下がりとなり 表面コア強度が高く内部が低く なる傾向が確認できた。

部材内の強度分布について強度発現率の検討 を行う。材齢91日コアの強度発現率は、内部側中 間と中心)では約90%でほぼ一様である。一方、表 面コアは解体材齢が3日以降の試験体では100% 以上で表面コアと中心コアの強度差は5~10N/ mm²程度となる。この強度差は既往の報告¹⁾と一 致している。しかし、1日解体試験体の表面コア の強度比は内部と同様に90%となった。

表面コアは初期高温履歴を受けないために本 来は長期強度が増加する傾向にあると考えられ る。しかし,1日解体試験体の表面コアだけは型 枠の早期解体により乾燥の影響を大きく受け表 面コアの強度低下が起きたものと考えられる。 (2) 低熱ポルトランドセメント(L40)

L40試験体について ,コア強度比を評価した結 果を図 - 6 ,ならびに図 - 7 に示す。

図 - 6より,コアの材齢7日強度は,初期発熱 の影響を受けて,封かん養生より高くなることが 確認できる。封かん養生に対する増加率は,内部 側コアでは約20%(約10N/mm²)で,温度上昇量が 比較的小さい表面部コアでは約10%であった。材 齢28日,ならびに91日では,内部側コア強度は封 かん養生と同等以上となる。

図 - 7より部材内強度分布を検討をおこなう。 材齢7日では型枠解体材齢に関係なく,圧縮強度 の分布は右上がりで一様な傾向を示している。ま た,中心と表面とのコア強度の差も全試験体で 15%程度で一致している。ここで,コア採取位置で の最高温度差は約9 と小さいにもかかわらず, 初期養生温度の差が若材齢での強度発現に大き な影響を与えている。材齢91日になっても,部材 内の強度分布は右上がりで変化はないが材齢1, 3日解体試験体では,直線の勾配が材齢7日より

更に大きくなり 試験体内の強度変動が更に大き くなったことを示している。

表面コアの中心コアに対する強度低下率を比 較すると、1日解体試験体では低下率は20%に及 んだが、5日解体以降の試験体では約10%に低減 している。両コアの強度差は、1日解体では9.5N/ mm²だが、3日で8.5N/mm²、5日と7日では4N/ mm²以下となった。型枠存置期間の長期化が、表 面コアの乾燥による強度低下防止に有効に働い ていると考えられる。

(3) 低熱ポルトランドセメント(L30)

L30試験体について ,コア強度比を評価した結 果を図 - 8 ,ならびに図 - 9に示す。

図 - 8より,コア供試体の材齢7日強度は,初 期発熱の影響を受けて,封かん養生より高くなる ことが確認できる。封かん養生に対する増加率は L40とほぼ同値で,内部側のコアでは約20%とな り,表面コアでは約10%であった。材齢28日,なら びに91日では,コア強度は封かん養生と同等か若 干低い程度であり,表面コアにおいても極端な強 度低下は確認できなかった。この結果 部材内位置 による強度のばらつきは L40に比べて小さくな る傾向にある。

図 - 9より部材内強度分布を検討する。材齢7 日での圧縮強度の分布傾向は右上がりで,内部側 の強度が表面コアと比べて高い。その強度比の差 は L40より若干小さい10%程度であった。材齢28 日 ならびに91日における分布傾向をみると,直線 の傾きは小さく,圧縮強度は試験体内でほぼ均一 に近い状態にあると評価できる。材齢1日と3日 解体試験体では,表面コアは内部側のコアに比べ 若干の強度低下が見られるが,その強度低下の程 度はL40より小さい。

ここで 材齢1日 ならびに3日解体試験体の表 面コアに見られる強度低下は 乾燥の影響による と考えられる。しかし 低下量はわずかであるこ とから 乾燥の影響であると確定するためにはコ アの含水率の検討を行うなど 更なる検討を要す ると考えられる。

(4) 低熱セメント+シリカフューム(LSF30) LSF30試験体について、コア強度比を評価した 結果を図 - 10,ならびに図 - 11に示す。LSF30で は、試験体の作製シリーズ間で大きな強度差が生 じた。材齢91日における圧縮強度を比較すると、 材齢5,7日解体試験のコンクリート強度は、1, 3日解体試験のコンクリート強度より10N/mm² 程度大きい。試験体間の差が大きいことから、主 に試験体内の強度分布について検討を行うこと とした。

図 - 10よりコア強度発現推移を検討すると、型 枠解体材齢とは関係なく 材齢7日では中心コア の強度はL40やL30試験体と同様に高くなる。特に 材齢5,7日解体試験体では 表面から中心に向け て順に強度が高くなり 積算温度を反映した強度 分布を示している。材齢28日では中心コア強度が 低くなる試験体もあるが 材齢91日では各試験体 で採取位置によるコア強度のばらつきは小さく なった。

図 - 11からも 材齢7日では 部材内部側のコア がより高強度となることが確認できる。材齢28日 では,5,7日解体試験体だけでなく,1,3日解体 試験体においても中心コアの強度が若干低く なっている。材齢91日でも中心コアの強度はわず かに低くなるが 試験体内で圧縮強度はほぼ均一 となることが確認できた。なお ,LSF30では 材齢 1日解体試験体の表面コアであっても,強度低下 は確認できなかった。

シリカフュームを混合することで 温度上昇量 が小さいために水和反応が遅れると考えられる 表層部においても、ごく初期材齢から緻密な組織 が形成されると推測される。その結果 表面コア の採取位置に 強度低下を起こすほどの乾燥の影 響は及んでいないと考えられる。 5. まとめ

高強度構造体コンクリートの,長期材齢下にお ける水平方向の強度分布について,以下の知見を 得た。

- 1) 強度分布傾向は結合材種類により異なる。 また、その傾向は以下のようにまとめられる。
- 2) 普通ポルトランドセメント
 ・部材中心部の強度が低下する傾向にある。
 ・早期解体は表面で乾燥の影響を受ける。
- 3) 低熱ポルトランドセメント
 ・部材内強度は均一となる傾向にある。
 ・早期解体は表面の強度低下を起こす。
 ・乾燥の影響度は水セメント比が低いほど少ない。
- 4) 低熱ポルトランドセメント+シリカフューム
 ・部材内強度は均一となる傾向にある。
 ・早期解体が強度へ与える影響は小さい。

なお 本論は 限られた条件と試験結果から検 討を行った結果である。今後は みかけ含水率など のデータの充実を行い 水分移動など別の観点か らの検討に取り組む所存である。

参考文献

- 1)皆川 淳ほか:構造体中でのコンクリート強度 発現の変動に関する基礎的実験,コンクリート 工学年次論文報告集,Vol.24,No.1,pp.945-950, 2002.6
- 2) 西本好克ほか:高強度コンクリートの強度補 正値に関する実機試験による検討,日本建築学 会大会学術講演梗概集 A-1,pp.1055-1056,2002.8
- 3)河上浩司,西本好克: Fc100/mm²級の高強度コ ンクリートの強度発現に関する研究,コンク リート工学年次論文集,Vol.24,No.1,pp.369-374, 2002
- 4)佐藤幸恵 桝田佳寛:高強度コンクリートの構造体中での圧縮強度の変動,日本建築学会構造系論文集,No.562,pp.9-14,2002.12