論文 2001 年芸予地震における被災 RC 造学校建物の地震応答解析

井上 純一*1・椛山 健二*2・荒木 秀夫*3・菅野 俊介*4

要旨:中国地方で発生した 2001 年芸予地震は全体的には被害は少なかったが,大き な被害を受けた建物も数棟存在した。本論文は同じ敷地内にあり,同じ構造形式であ るが,被害程度の異なる建物2棟に対して,推定地震動を用いた地震応答解析を行い, 実際の被害と比較検討し,2棟の耐震性能の違いを確認した。また,建物のコンクリ ート強度が設計値に比べ著しく低い場合に,動的耐震性能に及ぼす影響を検討した。 キーワード:2001 年芸予地震,被災 RC 造建物,地震応答解析,コンクリート強度

1. はじめに

2001 年 3 月 24 日, 安芸灘を震源とする 2001 年芸予地震(以下本地震)が発生した。この時 観測された震度や最大加速度は 1995 年に発生 した兵庫県南部地震に匹敵する規模の地震であ ったが,人的・物的被害は少なかった。しかし, 大きな被害を受けた建物も数棟存在した¹⁾。

本論文では,同じ敷地内に立地し,ほぼ同様 の構造形式にもかかわらず被災度区分判定²⁾が 「大破」および「中破」となった広島県立西条 農業高等学校(以下本建物)の校舎2棟を対象 とする。文献³⁾では本建物を対象に耐震診断・ 静的解析を実施し,本建物の耐震性能について コンクリート強度がせん断破壊の発生に与える 影響などを検討している。この結果を踏まえて, 建物周辺で観測された加速度記録と地盤特性か ら推定した地震動を用いて地震応答解析を行い, 実際の地震による動的耐震性能を評価し,被害 状況と比較・検討することで本建物の持つ耐震 性能を明らかにしようとするものである。

2. 建物概要と被害の概要
 図 - 1 に建物位置,震央および周辺地域の地

図を示す。本建物は震央(JMA)よりほぼ真北 に約 26km,広島県東広島市賀茂台地のほぼ中 央にある鏡山の南側に位置している。

図 - 2 に建物配置と土質柱状図を示す。本建 物は RC 造 4 階建ての管理・一般教室棟(以下 南棟),特別教室棟(以下北棟)の2棟であり, 両棟とも 1970年に建設され,桁行方向(東西方 向,以下 X 方向)はほぼ純ラーメン構造,梁間 方向(南北方向,以下 Y 方向)は耐震壁+ラー メン構造となっている。

図 - 1 建物周辺地図

 *1
 広島大学大学院
 工学研究科社会環境システム専攻
 (正会員)

 *2
 広島大学大学院助手
 工学研究科社会環境システム専攻
 博士(工学)(正会員)

 *3
 広島大学大学院助教授
 工学研究科社会環境システム専攻
 工博(正会員)

 *4
 広島大学大学院教授
 工学研究科社会環境システム専攻
 工博(正会員)

図 - 3 に被害の大きかった 2 階平面図を被 災度区分判定による柱の損傷度と併せて示す。 主な被害は両棟とも 1,2 階柱のX方向のせん 断破壊であった。被災度区分判定による損傷 割合 D 値(以下 D 値)は南棟では 2 階で最大 となり,その値は 71.7 で,大破と判定された。 北棟の D 値は最大が 1 階 19.2 で中破判定であ った。南棟と比較すると被害程度が異なる結 果となった。 地震被災後にコンクリートコアを採取し て圧縮試験を行った。コンクリートコアにつ いてはサイズ 100×h200mm のものを各階 それぞれ梁および耐震壁から3本づつ採取し, 各棟24本,合計48本のデータを得た。コン クリート強度の平均値(以下実測値)は,南 棟9.7N/mm²,北棟11.3N/mm²と極めて低い値 を示した。なお解析では実測値とともに,設 計図書に設計基準強度の記載が無かったため に設計当時の一般的な値から推測した値であ る18N/mm²(以下設計値)を用いて比較する。 鉄筋は建物から採取した鉄筋の引張試験結果 に基づき降伏強度を y = 240N/mm²とした。

3. 入力地震動

本解析では,本建物からほぼ真北約3kmに 位置する(独)防災科学技術研究所のK-NET 東広島観測点(以下K-NET東広島)の加速度 記録から1次元波動論等価線形解析⁴⁾(以下 SHAKE)により建物の入力地震動を推定する。

図 - 4にK-NET東広島で記録された加速度 記録を示す。加速度は EW 成分で最大となり, その値は 273Gal である。この記録波から観測 点の地盤特性に基づき SHAKE を用いて工学 基盤面(N値 50以上)上の地震動(以下基盤 波)を推定し,得られた基盤波と本建物の地

図-3 各棟2階平面図および柱損傷度

盤特性から入力地震動を推定した。なお,基 盤波の計算においては,最初に算定された基 盤波から地表面波を計算し,その加速度応答 スペクトルと記録波の加速度応答スペクトル とが一致するように修正している。また,本 建物の地盤特性は算定した入力地震動の加速 度が最大となる図 - 2 中の柱状図・No.6 を用 いることとする。ただし,工学的基盤面は地 盤資料から仮定できないため,本地震発生後 に設置された(独)防災科学技術研究所の Ki K-net 東広島観測点の地盤資料から推定した。

各層の地盤定数を表 - 1 に示す。せん断波 速度算定式には太田・後藤式⁵⁾を用いて算定 し,密度は文献⁶⁾を参考にして土質成分より 1.8~2.2 の値を仮定した。

以上の手法により推定した本建物の入力

表 - 1 地盤定数評価

深度	層厚	N値	成分	S波速度 Vs(m/s)	密度 (q/cm ³)
0.6	0.6	-	シルト質砂	-	1.8
2.5	1.9	3 8	粘土質砂	106.5	1.8
2.9	0.4	-	シルト質砂	-	1.8
3.8	0.9	7	粘土質砂	129.7	1.8
4.9	1.1	14	砂	154.7	1.8
5.2	0.3	11	粘土	142.8	1.8
6.8	1.6	41	砂	263.3	1.8
7.5	0.8	17	粘土質砂	233.0	1.8
10	2.5	24 23 24	砂	258.9	1.8
18	8	-	岩盤	420.0	2.2
-	-	-	工学的基盤	500.0	2.2

地震動を図 - 5 に示す。加速度は EW 成分で 最大となっており,その値は446.8Galである。 この値は図 - 4 に示した K-NET 東広島の記録 波の最大加速度と比較すると 1.6 倍以上の値 であり,地盤の特性によって周辺より大きな 加速度が建物に入力した可能性がある。

図 - 6 に入力地震動の加速度応答スペクト ル(減衰定数 h=0.05)を示す。図中には, 兵庫県南部地震の際に神戸海洋気象台(以下 JMA 神戸)で観測された NS 成分(最大速度 V=50Kine に基準化)を示している。本地震 の水平成分の応答加速度スペクトルの最大値 はJMA 神戸と同程度である。卓越周期はJMA 神戸の0.3~0.5 秒と比較すると0.1~0.3 秒に 分布しており短周期成分が卓越している。ま た,図中には両棟の弾性時固有周期も示して

図-5 入力地震動の加速度時刻歴

いる。南棟の X 方向の固有周期は 1 次 0.341 秒,2 次 0.120 秒であり,2 次固有周期が本地 震の卓越周期と一致している。Y 方向では 1 次固有周期 0.170 秒が本地震の卓越周期と一 致している。

4 地震応答解析

4.1 解析の仮定条件

図 - 5 に示した地震動を入力して地震応答 解析を行った。建物は剛床仮定の 3 次元立体 骨組に置換し,基礎は固定とした。部材のモ デル化に際して,コンクリートのヤング係数 は旧 RC 規準式⁷⁾により評価し,梁と柱は両 端に剛域を考慮して回転バネを配した材端 弾塑性バネモデルとし,材中央にはせん断特

性を表す弾性バネを配した。また軸変形を考 慮する軸バネも挿入した。

耐震壁は文献⁸⁾に 基づいてモデル化する。図-7 に部材のモデ ル化の概略を示す。回転バネの復元力包絡線 は菅野式 ⁹⁾を用いてトリリニアにモデルし, 壁板のせん断バネは弾塑性とし、トリリニア にモデル化した。軸バネは梁のみ弾性とし, 柱・壁板は弾塑性(圧縮:トリリニア,引張: バイリニア)とした。履歴特性は回転バネに 武田モデル(剛性低減率 0.4), 壁板のせん断 バネは原点指向形モデル,軸バネは修正原点 指向形モデルを用いた。積分には Newmark-β 法(β=1/4)を用い,時間刻みは 0.002 秒で ある。減衰は瞬間剛性比例型としており,1 次の減衰定数は 5%とした。本解析では上下 動は考慮しない。

4.2 地震応答解析の結果と考察

図 - 8 に解析によって得られたコンクリー ト強度が実測値および設計値の場合の最大 応答値を示す。図中の数字は実測値を用いた 場合の値である。また,図中には比較のため, JMA 神戸を入力した場合も示す。図 - 5 に示 す地震波を入力した場合,X 方向では変位は 1 次モードで変形しているのに対し,加速度

は4階で最小値を示しており,2次モードが 卓越していることがわかる。Y方向では加速 度,変位とも1次モードが卓越している。こ れは,図-6に示したように,X方向では2 次固有周期が,Y方向では1次固有周期が地 震波の卓越周期と一致したためであると考 えられる。JMA神戸を入力した場合はX方向 で層間変形角が1/50となった。以上のことよ り長周期成分が卓越する地震動であったな ら,被害が更に大きくなった可能性がある。

図 - 9 に実測値の場合の各棟・各方向のベ ースシア係数と最上階変位の履歴を例示す る。図中には文献³⁾中の静的解析結果を併せ

て示している。図 - 8 で示したように各方向 とも変位は 1 次モードが卓越しているが, X 方向に入力されるせん断力は 2 次モードが卓 越しているため 1 次モードが卓越する Y 方向 とは大きく異なり, X 方向の履歴は不規則に なっている。また,水平耐力は X 方向より Y 方向が大きく,各方向とも南棟よりも北棟の 方が水平耐力は高くなっている。

解析終了時の柱のヒンジ発生状況を被害の 大きかった X 方向について, 各柱の損傷度を 併せて図 - 10 に示す。ここで, せん断ひび割 れ強度式¹⁰⁾,およびせん断耐力下限式¹¹⁾によ り算定したせん断ひび割れ強度 Qc およびせ ん断終局強度 Qu によりせん断ひびわれ,お よびせん断破壊の発生をチェックした。図中 の は曲げひび割れ,×はせん断ひびわれを 示している。実測値の場合,南棟1階に柱の せん断ひび割れが生じており,南棟の耐震性 能が劣っていることがわかる。設計値の場合 では,南棟でせん断ひび割れは生じず,コン クリート強度が影響していることが確認で きる。しかし、実際の被害では柱にせん断破 壊が生じていたが,解析では,両棟ともせん 断破壊は発生していない。原因としては著し く低い強度のコンクリートの可能性や腰壁, 垂壁等の雑壁の影響が考えられる。この点に 関しては今後更に検討を行う。

																										:	曲	1	げて	いて	び暑	創れ	ı		×	:	t	h	断	υ	5	ド害	剖≯	ı			: 而	讨趸	夏雪	Ê
φ	- C		P	Ŷ	0	0	0	Ŷ	0	9	5-0		Ŷ	9	P	0	0		ß	Ϋ́	9	9	0	5	φ	6	0	0	C		B	9	0 0	0	0	d		P	0	0	0			0	0	0	0	 c		L
φ	đ		R	0	0	0	0	0	8	-0			ф М	0	0	-0			R	ф "	ф 	8	8		Φ d	ф 6	0	0	C		þ	X	[0	0	d			0	0	0			9	0	0	-0	_0 c		
ð	ď		B	0	0	0	0	0	0	-0			ф 6	8	0	0			8	φ	0	0	d		φ	9	0	0	C		P	9	0 0	0	-0	0			0 0	0	0							 		
9		\bigcirc	K	Ж	0	0	0	0	8	\mathbf{x}	$\langle \rangle$	K	φ	0	Ж	9		$\left \right\rangle$	K	θ	0	0	\mathbf{i}	$\langle \rangle$	K	Ф 0	0	0	C		P	9 5	0 0	0	0	d		B	0	0	0				0	0	0	_0 		

					F	南	東	Х	方	īĆ	j	(]	実	測	値)													北	棟	Х	方	」向] ((]	宒	測	値)					
ſ	0	P	C		P D	Ŷ	0	0	P	C		p ' D	٩ ا	φ Φ	φ 0	P	φ 0	Ŷ	0	φ 0	0 0	0	0	0	0	-0	-0						9 5	φ 6	0	9	0	9	-0		5	9 0	0	9
φ σ	0	0	0))	0	0	0	0	d				0 0	0	9 0	0	φ 6	0	0	0		0	0	0	0	0		\times	d		P	0 0	φ 6	φ 6	0	0		-0	, _ ,	b	9 6	0	0
9	8	-0			P 5	0	0	0					8	0 0		9 5	φ	Ф 6	0	φ 0	0 0	9		0	0	8	-0	C C				P	Ф 	φ 6	P	9	0		-0		5	9 6	ф	9
9	0	9	0		p h	9	<u>Ф</u>	0	9					ф Л		р 	<u>ф</u>	φ 	0	φ 	0 0	T T	¢.	0	0	Å	-0	Č					7	φ	φ.	¢,		9	-9		R	9	9	φ

							Ē	有权	東	X	方	向	(訠	ł	t (i	直〕)														北	棟	Х	()	<u>ה</u>	卣	(訠	Z	+1	値)						
	不明	12	ι		1	明北	a L	1	1	1	1	なし	1	- 1	な	ר '	1		1	¥し	1	1	1	자	H		1	1	1	なし		1			1	1	1	t	しな	しな	i li	なし	, ,			1	1	-	なし
不明	不明	ا ہ ا	明不	明不	明	1	1	1	a L	1	-		-	_	1	1	1		1		-	-	1	자	明な	しな	ί	1	1	なし	z.	, ta	ノな	ι	1		ซ่เ	,な	ι	1	-		 i		 	1	<u>_</u> 1	aί	
不明	-	1	1			1	1	1	1	1	1	1	-	-	1	1	1		1	1	1	-	-	不	明な	しな	ι	1			1	1			1		なし	, ta	ι	1		なし	,な	ι	1	1	1	aυ	なし
なし	-					1	1	1	1	1	1	1	-	-	1	1			1	1	1	-	1	t	しな	ι	1	1	1	1	1	1			1	1	1	1		1 1						1	1		
												12	12				 8 1	7 1				21			2 1		2	 3					2	8	9	 10		 ⊢1	2 1	 3	 14	 15	 5 10	61		 18	 19	20	 21
'	2	3	4	U	, (柏	έσ	。) 損	Į	易月	ŧ	(¹	南	棟	X	方	īĠ	<u>ו</u> ני)	19	20	21	22	2 2,	5		-	Ū		柱	Ď	損	傷	易	。 芰	(北	达林	ŧ	X	方	þ]))					- ·
											3	٢	- '	10		柱	σ.) ł	<	ン	シ	°σ.)≩	ŧź	ŧ	状	汸	2 æ	ŝ	よる	び	柱	С,	抈	員	傷													

各柱の応答せん断力Qのせん断ひび割れ強 度Q_cに対する比Q/Q_cおよびせん断終局強度 Q_Uに対する比Q/Q_Uを図 - 11 に示す。実測値 の場合,南棟のQ/Q_cは1階で1.0を超え,2, 3 階でも0.9程度と大きい。北棟は1階で1.0 を超えているが,この柱は1本であり,2階 以上も南棟と比較して値は小さい。この傾向 は実被害と一致する。また,南棟1~3 階の Q/Q_Uの値は0.7~0.8であり,北棟と比較する と大きい。設計値の場合,南棟1階でQ/Q_c が0.71,Q/Q_Uが0.63と実測値の場合より大 きく減少している。以上より,極度に低いコ ンクリート強度がせん断ひび割れ,およびせ ん断破壊の発生に影響を及ぼす事を示した。

5. まとめ

2001 年芸予地震で被害を受けた西条農業 高等学校の校舎 2 棟の地震応答解析を行い, その結果を実際の被害と比較検討した。以下 に得られた知見を示す。

1) 南棟と北棟を比較した場合, せん断ひび 割れの発生, および水平耐力から南棟の耐震 性能が劣っていることを確認した。

2)コンクリート強度がせん断ひび割れ,せん断破壊の発生に影響を及ぼす事を示した。
 3)本解析では柱のせん断破壊は生じておらず,実際の被害と一致していない点については今後の検討を要する。

謝辞

地震被害調査において多大なご協力を頂 き,貴重な資料を提供して頂きました広島県 教育委員会ならびに西条農業高等学校の皆 様に深甚なる感謝を表します。また,解析で は独立行政法人防災科学技術研究所の強震 ネットワーク(K-NET),基盤強震観測網 (KiK-net)のデータを利用しました。ここに 記して深謝いたします。

参考文献

- 日本建築学会:2000年鳥取県西部地震・2001 年芸予地震被害調査報告,2001.10
- 2)日本建築防災協会:震災建物等の被災度判 定基準および復旧技術指針(鉄筋コンクリ ート造編),1991
- 3) 片谷陽子ほか:2001 年芸予地震で被災した
 学校建物の耐震性能,日本建築学会技術報
 告集,第16号,pp.105-110,2002.12
- 4) Schnabel, P.B., Lysmer, J. And Seed, H.B.: SHAKE: A computer program for earthquake response analysis of horizontally layered sites, ReportNo.EERC72-12,EERC,1972
- 5)太田裕,後藤典敏:横波速度を推定するた めの実験式とその物理的背景,物理探鉱, 第31巻1号,pp.8-17,1977.2
- 6)日本建築学会:入門・建物と地盤との動的 相互作用,pp.335-336,1996
- 7)日本建築学会:鉄筋コンクリート構造計算
 規準・同解説,pp.43-45,1991
- 8) Kabeyazawa, T. et.al. :Analysis of the full-scale seven-story reinforced concrete test structure, Journal of the Faculty of Engineering, the University of Tokyo (B), Vol.XXXVII, No.2, pp.431-478, 1983
- 9) 菅野俊介:鉄筋コンクリート部材の復元力
 特性に関する研究,コンクリートジャーナル,Vol.11,No.2,pp.1-9,1973.2
- 10)日本建築学会:鉄筋コンクリート終局強度 設計に関する資料,pp.70-71,1987.9
- 11)日本建築センタ :構造計算指針・同解説, pp.230-233,1991