報告 軸力下におけるヒンジ継手の挙動

舟川 勲^{*1}·岩本 勲^{*2}·柴田卓詞^{*3}·前川岳康^{*4}

要旨:シールドトンネル用セグメントの継手構造を簡略化した「多ヒンジ系セグメント」は, 従来式の継手と比較して,経済性,施工性,耐久性が向上することにより,コンクリート製 品としての付加価値が高いと考えられる。本報告では,ナイロン製継手をセグメントリング 間に用いた「多ヒンジ系セグメント」の継手性能に関して,押し込み実験,引き抜き実験, 耐久性試験および軸力下におけるせん断実験を実施し,基礎的データを把握した。その結果, 軸力はセグメントを模擬したコンクリートブロック部分の接触面の摩擦力に影響されるが, 継手のせん断耐力には影響が少ないことがわかった。

キーワード:多ヒンジ系セグメント、ナイロン、継手、軸力、せん断力

1. はじめに

従来のシールドトンネル用セグメントの継 手構造は、鋼製の継手板とボルトを用いた剛 性の高い構造としている。それに対して筆者 らは、継手構造を簡略化した「多ヒンジ系セ グメント」を考案し、種々の検討を行ってい る¹⁾。継手構造の簡略化は、施工時に継手ボ ルトの締結作業を省力化でき、露出鋼材が少 なく耐久性が向上するといった効果もあり、 コンクリート製品としての付加価値が高いと 考えられる。

さらには、セグメント価格において15%程 度も占める従来式の継手と比較して、半分程度 という経済的なメリットもある。

本報告では、ナイロン製継手をリング間に用 いた「多ヒンジ系セグメント」の継手性能に関 して、基礎的データを把握するために、押し込 み実験、引き抜き実験、耐久性試験および軸力 下におけるせん断実験を実施し、これらの試験 および実験で得られた力学的挙動特性等につい て報告する。

単位:mm

種 類	LC	HC1	HC2	HC3	LP1	LP2	HD	R
Standard Duty	70	40	45	21.3	102	30	22.3	33
Medium Duty	90	55	61	30.4	116	40	31.6	42
Heavy Duty	120	71	84	48.8	157	55	50	60

図-1 継手の寸法諸元

2.1 継手種類

本実験で用いられる継手は、ポリアミド(ナ イロン)を主成分とする成形材料である。セグ メント径に応じて小、中、大の3種類の継手を 適用するが、便宜上、Standard Duty, Medium Duty, Heavy Duty と呼んでいる。継手の寸法諸 元を図-1に示す。

2.2 引張特性

継手素材の引張特性を把握するため引張試験 を実施した。併せて、コンクリート中での長期 安定性を確認するために、アルカリ溶液中への 浸せき後の引張試験も実施した。試験体は JIS

2. 継手素材の基本特性

*1 (株)青木建設 施工本部研究所 工修 (正会員)
*2 近畿コンクリート工業(株) 土木事業部 エンジニヤリンググループ 工博
*3 関西電力(株) 土木建築室 土木建設グループ 工修
*4 関西電力(株) 土木建築室 土木建設グループ

K7113 に従い、プラスチック 1 号形試験片に準じて、継手 ボルトから幅 25mm、厚さ 6.0mm、長さ140mmの試験片 を切り出し、各水準について 3 体、変位制御型試験機を用 いて、引張変位速度 5mm/分 で引張試験を実施した。アル

カ リ 溶 液 (Ca(OH)₂=2g/l, NaOH=10g/l, KOH=14g/l) はコンクリートと同等の pH (=12.5 ~13.0)とした。シールドトンネルは地中構造物 であるため、環境温度は年間を通じてほぼ一定 温度(20℃程度)を保つ。ここで、材料の反応 温度と反応速度との関係において,反応速度は 温度の逆数に対して指数関数的に減少し、一般 に10℃の温度降下によって反応速度は1/2倍と なる「アレニウスの10度半減則」と呼ばれてい る。セグメントの耐用年数を50年と仮定し,50 年後の 20℃での継手の引張強度低下率を推定 するため、溶液の温度による促進効果を考慮し、 40℃と60℃の2水準とした。なお、本報告では 浸せき3ヶ月の試験結果までであるが、試験は 継続して実施している。

試験水準および試験結果を表-1に示す。引 張強度は浸せき期間の増加と温度の増加に伴っ てゆるやかに減少する傾向が見られ、「60℃-3 ヶ月」の浸せき条件では、「浸せき無し」と比較 して、20%程度小さい結果となった。引張弾性 率も強度の低下に伴って低下した。

3. 継手の押し込みおよび引き抜き特性

3.1 概要

試験体形状を図-2に示す。試験体は幅 0.25m×長さ0.30m×厚さ0.25mのコンクリート ブロックを用い,継手は図-1の Medium Duty を用いた。継手の構造は、ボルト部がコンクリ ートに埋め込まれており、接続時にカプラーを 装着して、その中に次のセグメントのボルトが 入り込む。ボルトおよびカプラーには溝が刻ま れており、この溝の形状はボルトが入りやすく

表-1 試験水準および引張試験結果

試験水準 (温度-浸せき期間)	引張強度 (N/mm ²) 平均値/最小値	引張弾性率 (kN/mm ²) 平均値	破断伸び (%) 平均値	
浸せき無し	50.2/49.2	1.44	179.9	
40℃-1ヶ月	46.7/44.2	0.92	208.2	
40℃-3ヶ月	44.2/41.6	0.79	222.0	
60℃-1ヶ月	43.7/42.4	0.91	199.1	
60℃-3ヶ月	40.1/39.9	0.83	158.8	

正面図

71

250

B9試験体

ひずみゲージ

補強筋

図-3 押し込み実験概要図

図-4 引き抜き実験概要図

抜けにくい構造となっている。

継手の押し込みおよび引き抜き特性を把握す るため、押し込み実験および引き抜き実験を実 施した。併せて,この継手の コンクリート中での長期間の 安定性を検証するため,50℃ アルカリ溶液中(pH=12.5, Ca(OH)₂=2g/l)に1,3ヶ月浸 せき後,引き抜き実験によっ て確認した。

図-3に押し込み実験概 要図,図-4に引き抜き実験 概要図をそれぞれ示す。なお, コンクリートは,設計基準強

度 42N/mm² (Gmax=20mm, スランプ 8cm, 普 通ポルトランドセメント)を用いている。なお, B9 試験体には継手ボルトの引張時に発生する コンクリート部分の引張補強筋として, ボルト ホール周りにスパイラル筋 (φ10) を配置して いる (図-2参照)。

実験結果を表-2に示す。また、一例として 試験体の押し込み時の荷重と試験体間距離との 関係を図-5に示す。試験体の押し込み状況は 目視観察により、図中に示す「状態1」までは、 双方のコンクリート面は接触しておらず、継手 のみの押し込み荷重であった。「状態1」で双方 のコンクリート面の一部が接触し始める。その 後、「状態2」において双方のコンクリート面が 全面的に接触した。

荷重除荷時においては,「状態3」より,双方 のコンクリート面が離れ,継手への圧縮応力が 解放され始める。なお,何れの試験体において も,荷重除荷後(「状態4」)には1mm 程度の目 開きが生じた。これは,継手が弾粘性体である ため,最大押し込み荷重時においてもボルトと カプラーの溝が完全にはまり込まないためと考 えられる。実際の工事においては,推進ジャッ キの残留力が存在するので,問題ないと思われ る。

図-6に B1, B5, B9 試験体について,引き 抜き時の荷重と試験体間距離との関係を示す。 いずれの試験体においても最大荷重以後も,溝 が1箇所ずつ抜け,荷重が徐々に下がっていく

表-2 実験結果一覧

計驗	押し込み実験		引き抜		
体名	状態 1	状態 2	最大荷重	引張剛性*2	備考
	(kN)	(kN)	(kN)	(kN/mm)	
B1	10.20	12.60	23.8	3.7	浸せき無し
B2	9.20	15.90	16.1	2.7	浸せき無し
B3	11.00	*1	37.2	6.4	1ヶ月浸せき
B4	10.20	11.50	32.4	6.2	1ヶ月浸せき
B5	10.90	16.25	22.3	4.6	3ヶ月浸せき
B6	9.85	15.15	34.5	4.6	3ヶ月浸せき
DO	0.00	10.00	26.5	4.1	浸せき無し
D9	9.90	19.90	20.3	4.1	補強筋あり

注)*1:測定出来ず,*2:引張剛性は試験体間距離 3mm で評価

様子がわかる。このように,抜け出してからも じん性のある引き抜き特性を示す。

また,表-2より,押し込み荷重と比較して 引き抜き荷重は概ね2倍程度大きなことがわか る。

継手素材の引張強度および引張弾性率はアル カリ溶液への浸漬期間の増加に伴って低下して いたものの、50℃-3ヶ月の浸せき試験体の破 壊形態は、浸せき無しの試験体と同様に、ボル ト部がカプラーから引き抜けることとなり、ボ ルトの付着切れやボルトの引張破断は生ぜず、 引き抜き特性には影響していなかった。なお、 本報告は浸せき3ヶ月の実験結果までであるが、 実験は継続して実施している。

図-7に B9 試験体における補強筋のひずみ 量と引き抜き荷重の関係を示す。補強筋には殆 どひずみが発生しておらず,コンクリートへの 影響は無いと考えられる。また,図-8は B1, B9 試験体について,引き抜き時の荷重と継手ボ ルトのひずみ量の関係を示したものであるが, 補強筋の有無の比較では,双方とも同程度のひ ずみ量が発生していた。また,補強筋の有無に 関わらす,引き抜き実験時に継手周囲のコンク リート部分には有害なひび割れが発生していな かった。これらの結果より,継手ボルトの引張 時に発生するコンクリート部分の引張補強筋は 必要ないと考えられる。

4. 継手のせん断特性

4.1 実験概要

セグメントのリング間継手には常時,地震時 ともせん断力が作用する。常時においてはシー ルド推進時の残存圧縮力があり,地震時には引 張状態となることも考えられる。ここでは,軸 力の影響を考慮して,常時の残存圧縮力である 60kNを中心に,25kNと120kNの軸力について, 二面せん断実験を実施した。

4.2 試験体形状および載荷方法

形状寸法および配筋図を図-9に示す。試験 体は幅 1.0m×長さ 0.8m×厚さ 0.3m のコンクリ

図-8 継手ボルトひずみ量

表-3 実験ケース

試験 体名	導入軸力 (kN)	備考
E1	25	無負荷状態を想定
E2	60	常時の残存圧縮力を想定
E3	120	地震時=常時×2 倍を想定

図-9 試験体の形状寸法および配筋図

図-10 せん断実験概要図

ートブロック3体を、2本の継手を介して一体 化させた。なお、継手は図-1の Medium Duty を用いている。また、コンクリートブロック間 には、接合時の応力集中によるコンクリート面 のひび割れ発生を抑制するため、緩衝材(JIS A6005:ルーフィングペーパー,厚さ1.5mm)を 挟み込んである。なお,コンクリートは,設計 基準強度 42N/mm²を用いている。実験ケースを **表-3**に示す。

載荷方法は試験体側面方向から表-3に示 した軸力を導入し,一定保持させた状態で,図 -10に示すように二面せん断実験とした。各 荷重毎にせん断変位量,継手ひずみの測定を行 うとともに,破壊状況の目視観察を行った。

4.3 実験結果および考察

(1) 破壊状況

荷重と変形量の関係を図-11に示す。加力 初期の段階(「状態1」)では、いずれの試験体 においても、荷重のみ大きくなっている。ここ では、導入軸力による反力ブロックと載荷ブロ ック間の接触面の摩擦力のみが影響していると 考えられる。次に、「状態2」までは変形曲線は 横這いとなっているが、この原因として、加力 に伴い、せん断変形量が大きくなるが、継手が ボルトホール上部に接触するまではクリアラン スが1mm あり、継手自体へのせん断力の影響 が少ないこと、および継手カプラーと継手ボル トの初期のかみ合いが影響することにより、こ のような挙動を示したと推測される。その後、

「状態3」まで弾性的に挙動し、「状態3」以降 は非線形挙動となった。地震時を想定した軸力 を導入したケース(E3)から考察すると、せん 断変形量は25mm程度まで許容されると考えら れる。

実験終了時の破壊形態は、コンクリートブロ ックにはほとんど損傷が見られず、片方の継手 カプラー中央部分でせん断破壊され(写真-1), もう一方の継手については破断に至らぬものの, 塑性的に殆ど伸びきっている状態であった。

表-4に実験結果の一覧を示す。最大荷重は E1~E3 試験体でそれそれ、211.6kN、229.2kN、 254.4kN となり、そのときの変形量は 34.3mm、 32.1mm、27.8mm となっていた。なお、「状態 2」 から「状態 3」を弾性範囲として、この割線勾 配をせん断ばね定数(継手1本当たり)として

図-11 荷重と変形量

写真-1 継手の破壊状況

表-4 実験結果一覧

	演 田	壮 能	試験体名		
	旭 川	1八 歴	E1	E2	E3
状態1		荷重(kN)	10.4	56.2	47.3
		変形量(mm)	0.3	1.1	0.8
诏出	中能っ	荷重(kN)	19.6	65.5	57.0
炉 性 新	扒恕 2	変形量(mm)	4.3	7.4	2.6
	中能 2	荷重(kN)	63.8	103.0	113.9
甲已	小忠 J	変形量(mm)	8.4	9.5	5.0
世ん断ばれ		コ定数(kN/mm)	5.39	8.93	11.85
最大荷重時		荷重(kN)	211.6	229.2	254.4
(Pmax)		変形量(mm)	34.3	32.1	27.8

表-5 継手のせん断強度の算定

試験体名	荷重P	ブロック自重W	軸力N	摩擦力f=μN	継手せん断強度(1本当たり)
	(kN)	(kN)	(kN)	(kN)	Ps=(P+W)/2-f(kN)
E1	211.6	5.88	24.5	6.1	102.6
E2	229.2	5.88	58.8	14.7	102.9
E3	254.4	5.88	117.7	29.4	100.7

μ:動摩擦係数(=0.25)

評価し, E1~E3 試験体ではそれぞれ, 5.39kN/mm, 8.93kN/mm, 11.85kN/mmとなった。

(2) 継手のひずみ性状

継手のひずみ性状を図-12に示す。なお, ひずみ量は継手ボルトに貼付した泊ゲージの平 均値とした。E1 試験体(軸力:25kN, 無負荷 状態を想定)では,ひずみは引張側領域で終了 しているが, E2 試験体(軸力:60kN,常時の残 存圧縮力を想定),E3 試験体(軸力:120kN)で は,圧縮側領域で終了する結果となっていた。

(3) 軸力の影響

3 体の実験結果から、ルーフィングペーパー を緩衝材として挟み込んだコンクリートブロッ クの動摩擦係数として, 0.25 が得られた。

継手のせん断強度は、断面積×材料(ナイロン)のせん断強度で計算され、(1679mm²× 60N/mm²)約100kNとなる。実験で得られた動 摩擦係数を用いて、表-5のように算定すると 継手の受け持つせん断耐力とほぼ一致する。

従って、軸力はセグメントを模擬したコンク リートブロック部分の接触面の摩擦力に影響す るが、継手のせん耐力には影響が少ないと考え られる。

また,表-4により,軸力が大きくなるほど, せん断ばね定数が大きくなる傾向を示した。

これらの結果は,土木学会 コンクリート標準 示方書 [構造性能照査編]²⁾の 6.3.7 設計せん断 伝達力 [解説](1) に記述される内容より,同 様に考察できる。

本研究で用いたセグメントリング間に用いる ナイロン製継手のせん断特性は,材料であるナ イロンのせん断特性と断面形状によって決定さ れると考えられる。また,破断個所であるカプ ラー部分は円環であるので変形性能が大きく, それによって大きなじん性が得られたと推測さ れる。

5. まとめ

従来のシールドトンネル用セグメントに用い られている、剛性の高い継手ではなく、継手構 造を簡略化した「多ヒンジ系セグメント」で用 いるナイロン製継手に関して、基礎データの把 握を目的として各種実験を行った。

得られた知見は以下の通りである。

- (1) 軸力はセグメントを模擬したコンクリート ブロック部分の接触面の摩擦力に影響する が,継手のせん断耐力には影響が少ないと考 えられる。また、軸力が大きくなるほど、せ ん断ばね定数が大きくなる傾向を示した。
- (2) ナイロン製継手において、破断個所は円環 であるので変形性能が大きく、それによって 大きなじん性が得られたと推測される。
- (3)継手素材の引張強度および引張弾性率はア ルカリ溶液への浸漬期間の増加に伴って低 下していたものの、50℃-3ヶ月浸せき後の 引き抜き実験では、引き抜き特性には影響し ていなかった。

参考文献

- 岩本 勲,伊豆好弘,三皷 晃,前川岳康:
 多ヒンジ系セグメントの耐荷特性について、
 トンネル工学研究論文・報告集,第12巻、
 pp.489-494,2002.11
- 2) 土木学会 2002 年制定 コンクリート標準 示方書 [構造性能照査編], 2002.3