論文 コンクリート中における塩化物イオンの反応・移動のモデル化

石田 剛朗^{*1}·河合 研至^{*2}·佐藤 良一^{*3}

要旨:本研究では、コンクリート中における塩化物イオンの固定現象に関して、フリーデル 氏塩の生成についてはコンクリートの固体部分に含まれる未水和C₃Aと細孔溶液中のCl⁻と の二次反応であると仮定し、また C-S-H への吸着については吸着等温式を Langmuir 型と仮 定することにより、塩化物固定速度の概念を取り入れ、コンクリート中における塩化物イオ ンの反応・移動のモデル化を行った。実験との比較により、ある程度モデルの妥当性は確認 されたが、C-S-H への Cl⁻の吸着性状やモノサルフェートによるフリーデル氏塩の生成速度 については今後さらなる検討が必要である。

キーワード:塩化物イオン、フリーデル氏塩、吸着、拡散

1. はじめに

鉄筋コンクリート構造物の主要な劣化要因の 一つに塩害による鉄筋腐食がある。既存の構造 物に対して耐久性を調査し,適切な補修・補強 を行うためにも、また新規の構造物に対して正 確にその供用期間を予測するためにも,より正 確な塩化物移動予測を行う手法が必要である。

一般に飽和コンクリート中での塩化物の移動 は濃度勾配を駆動力とする拡散によって生じる とされ,移動予測には Fick の拡散方程式が用い られることが多い。しかし,コンクリートの細 孔溶液中の塩化物イオンはフリーデル氏塩など によって固定されるため,この固定現象を解明 しなければ塩化物移動予測は困難である。

塩化物の固定については現在までに多数の研 究がなされており、C₃A もしくはモノサルフェ ートとの反応によるフリーデル氏塩の生成なら びに C-S-H を主とした水和物による吸着が固定 メカニズムとして考えられている。しかし、従 来の固定現象を表す手法の多くは、固定された 塩化物と細孔溶液中の塩化物が常に平衡状態を 満たすといった考えに基づいており、塩化物の 固定速度を扱っているものは少ない。 本研究では、コンクリート中における塩化物 イオンの固定はフリーデル氏塩の生成および C-S-H への吸着によると仮定し、塩化物固定速度 の概念を取り入れ、コンクリート中における塩 化物イオンの反応・移動のモデル化を行った。

2. 実験概要

2.1 フリーデル氏塩の生成速度に関する実験

合成した C_3A を用いて,フリーデル氏塩の生 成速度に関する実験を行った。実験に用いた C_3A は試薬の炭酸カルシウム ($CaCO_3$) ならびに酸化 アルミニウム (Al_2O_3) を用いて合成し,ブレー ン比表面積を $3100 \text{cm}^2/g$ とした。

試薬の塩化カルシウムを用いて調製した 3.4%CaCl₂溶液中に3gのC₃Aを投入して所定の 時間攪拌した後に吸引ろ過を行い,残渣と溶液 に分離した。CaCl₂溶液量は水粉体比が1000%と なるように定め,攪拌時間は、5、10、30min、1、 1.5、2、6hrとした。ろ過後の残渣試料は24時間 以上の真空脱気を行って乾燥させた。ろ過溶液 中のCl⁻濃度の測定にはイオンクロマトアナラ イザを用い,残渣試料中のフリーデル氏塩の定 量にはDSC(示差走査熱量分析装置)を用いた。

- *1 広島大学 大学院工学研究科社会環境システム専攻 (正会員)
- *2 広島大学 大学院工学研究科社会環境システム専攻助教授 工博 (正会員)

*3 広島大学 大学院工学研究科社会環境システム専攻教授 工博 (正会員)

セメント	化学組成(%)								
	SiO_2	AI_2O_3	Fe_2O_3	CaO	MgO	SO_3	Na ₂ O	K ₂ O	CI
NC	20.1	5.04	3.08	64.3	1.13	2.09	0.30	0.37	0.01
EC	17.1	7.94	4.36	61.4	1.80	3.74	0.24	0.02	0.054

表-1 使用したセメントの化学組成および鉱物組成

鉱物組成(%) セメント C_3S C₄AF C_2S C_3A NC 64.8 9.4 8.2 9.4 EC 52.2 9.6 13.7 13.3

2.2 塩化物イオンの拡散実験

拡散セルを用いて塩化物イオンの拡散実験を 行った。セメントには普通ポルトランドセメン ト(以下 NC と称す)とエコセメント(以下 EC と称す)の2種類を使用した。化学組成、鉱物 組成を表-1に示す。EC は NC と比較して化学 組成では Cl の含有量が多く、鉱物組成では C₃A の含有量が多いなどの特徴がある。

供試体には W/C=0.60 のコンクリートを使用 した。コンクリートの配合を表-2に示す。コ ンクリートはΦ10×20cmの型枠に打設後,一日 後に脱型して NC に関しては 45 日間, EC に関 しては 38 日間の水中養生を行った。養生終了後 円柱形コンクリートを 2cm の幅にスライスし, これを供試体とした。また,水分の蒸発や侵入 を防ぐ目的で供試体側面にはエポキシ系樹脂を 塗布した。さらに前処理として 24 時間の真空脱 気および 24 時間の純水浸漬を行った後,図-1 に示す拡散セルに設置した。定期的に 3%NaCl 溶液側と純水側のセル溶液を採取し,Cl⁻濃度を 測定することにより Cl⁻の移動量を求めた。Cl⁻ 濃度の測定はイオンクロマトアナライザを用い て行った。

3. 実験結果及び解析

3.1 フリーデル氏塩の生成速度

コンクリート中におけるフリーデル氏塩の生 成反応は、以下に示す式(1)のように表現される と考えられる。

$$C_3A + Ca^{2+} + 2Cl^- + 10H_2O$$

$$= C_3 A \cdot CaCl_2 \cdot 10H_2O \tag{1}$$

反応に寄与するのは C₃A, Ca²⁺, Cl⁻であるが, この内 Ca²⁺については細孔溶液中に通常存在す

表一	2	コン	クリ)—	トの	配合
----	---	----	----	----	----	----

	W/C	s⁄a (%)	単位量							
				(kg/	(g/m^3)					
			W	С	S	G	Ad1	Ad2		
NC	0.60	47.35	178	297	853	985	214	2.14		
EC	0.60	47.35	178	297	853	985	356	2.89		
スランプ8±2.5cm、空気量4.0±1.0%										
Ad1:高性能AE減水剤、Ad2:AE助剤										

図-1 拡散セル

ること, さらに反応で消費されたとしても水和 で生成された Ca(OH)₂から新たな Ca²⁺が供給さ れると考えられることから,反応速度には大き な影響を与えないと仮定した。そこで,フリー デル氏塩の生成反応は Cl⁻と C₃A の二次反応で あるとの仮定に基づき,生成速度は細孔溶液中 (液相)の Cl⁻濃度とペースト硬化体や骨材など の固体中(固相)の C₃A 濃度の積に比例すると した。以下に式(2)として示す。

$$\frac{\partial M_{fr}}{\partial t} = k \cdot C_{C3A} \cdot C_{Cl} \tag{2}$$

Cl-に関してはフリーデル氏塩生成量の2倍の

量が固定されるものとし,式(2)を用いた計算結 果をフリーデル氏塩の生成速度実験の結果と比 較した。フリーデル氏塩生成率の経時変化を図 -2に,溶液中のCl⁻濃度の経時変化を図-3に 示す。ただし,C₃A に関しては粉体であること から,固相濃度という概念が適用しにくいため, 式(2)におけるC₃A 濃度(mmol/cm³)に代えてC₃A 量(mmol)を用いて計算を行った。また,フリ ーデル氏塩生成に伴う溶液量の減少についても 考慮して計算を行った。

フリーデル氏塩生成率,溶液中の Cl-濃度とも に計算値は実験結果に概ね一致している。この ことから,フリーデル氏塩の生成反応速度を式 (2)を用いて定性的には表現できると考えられる。

ただし、この結果はあくまで合成した C₃A と 試薬を用いて行った実験結果である。実際にコ ンクリート中でフリーデル氏塩が生成する場合 には、他の溶存イオンや pH が反応に影響を与え る可能性がある。また、実験値は粉体と溶液を 撹拌して得た結果であるので、計算で用いた生 成速度係数(k=1.1(mmol⁻¹・day⁻¹))はコンクリー ト中での生成速度係数よりも大きな値となるこ とが考えられる。

3.2 解析モデル

本研究で用いたモデルの概念を図-4に示す。 解析対象は拡散セルとしたので、コンクリート 中の細孔空隙は溶液で飽和しているとし、コン クリート微小要素を液相と固相の2相に単純化 してモデル化した。また水和が十分に進行した 後であるとして、要素全体の体積は一定とした。 ただし、反応によって液相と固相の体積比は変 化するものとする。支配方程式を以下に示す。

$$Vl \cdot \frac{\partial C_{Cl}}{\partial t} = K \cdot Vl \cdot div(gradC_{Cl}) - 2q_1 - q_2$$
(3)

$$q_1 = k_1 \cdot C_{C3A} \cdot C_{Cl} \quad \left(C_{Cl} \ge C_{frmn} \right) \quad (4)$$

 $q_1 = 0 \qquad \left(C_{Cl} \le C_{frmn} \right) \qquad (5)$

図-4 モデルの概念

$$\frac{\partial}{\partial t} (Vs + Vl) = 0 \tag{6}$$

$$\Delta V = \Delta Q \Big(D_{fr} - D_{C3A} \Big) \tag{7}$$

ここで,

C_{C1}: 微小要素液相中の Cl⁻濃度(mmol/cm³)
C_{C3A}: 微小要素固相中の C₃A 濃度(mmol/cm³)
Vs: 固相体積(cm³)
V1: 液相体積(cm³)
K: 液相における Cl⁻の拡散係数(cm²/day)
q₁: フリーデル氏塩の生成速度(mmol/day)
q₂: Cl⁻の C-S-H への吸着速度(mmol/day)
q₂: Cl⁻の C-S-H への吸着速度(mmol/day)
k₁: フリーデル氏塩の 生成速度係数(cm⁶/mmol/day)
C_{fmn}: フリーデル氏塩が生成可能な 下限 Cl⁻濃度(mmol/cm³)
△V: 反応に伴う体積変化量(cm³)
△Q: フリーデル氏塩のモル体積(cm³/mmol)
D_{C3A}: C₃A のモル体積(cm³/mmol)

式(3)は液相中での Cl⁻の移動と固相への固定 を表す,質量保存式である。Cl⁻の移動は拡散方 程式に従うものとした。また、理論上 1mol のフ リーデル氏塩が生成すると 2mol の Cl⁻が固定さ れることから、フリーデル氏塩生成速度 q1 を 2 倍したものをフリーデル氏塩生成による Cl-の 固定項とした。また、式(4)、(5)がフリーデル氏 塩生成速度式であるが、液相中の Cl-濃度が 0 になることは考えにくいことから、フリーデル 氏塩が生成可能な Cl-濃度の下限値: Cfmm を設 け, これを 0.0001(mmol/cm³)とした。式(6), (7) はフリーデル氏塩の生成反応に伴う体積変化を 表しており、フリーデル氏塩の体積と C₃A の体 積の差だけ、固相体積が増加し液相体積が減少 するとした。未水和 C₃A のモル体積は 0.08888(cm³/mmol),フリーデル氏塩のモル体積 は 0.2764(cm³/mmol)とした。

Cl⁻の C-S-H への吸着速度 q_2 については以下 のようにモデル化を行った。C-S-H による Cl⁻の 吸着特性については平尾ら¹⁾や中村ら²⁾によって 報告がなされている。中村らによれば,溶液中 の Cl⁻の残存濃度(平衡濃度)と C-S-H の吸着 量との関係は Langmuir 型の吸着等温式で表され, Cl⁻の飽和吸着量は C-S-H 1g につき 172mg であ ると報告されている。そこで、本研究ではこの 報告に基づき、C-S-H による Cl⁻の吸着を Langmuir 型の吸着等温式を用いて表すこととし た。図-5に Cl⁻の平衡濃度と C-S-H の吸着量 との関係を示す。飽和吸着量は中村らの報告に ある 172 (mg/g of C-S-H) とした。

Langmuir 型の吸着等温式は以下の式を用いて 表される。

$$V = \frac{V_m \cdot A \cdot C}{1 + A \cdot C} \tag{8}$$

ここで, V:吸着量 C:平衡濃度 V_m:飽和吸着量 A:定数

ただし、この式は平衡濃度と吸着量の関係で あって、吸着速度を表すものではない。そこで、 以下のように考える。ある濃度 C_1 が与えられた とき、吸着平衡に達したときの平衡濃度を C_2 と する。溶液量を L とすれば、吸着平衡に達する までの吸着量は、 (C_1-C_2) L と表される。すでに 吸着されていた量を V_0 とすれば、式(8)より以下 の式が成り立つ。

$$V_{0} + (C_{1} - C_{2})L = \frac{V_{m}A \cdot C_{2}}{1 + A \cdot C_{2}}$$
(9)

式(9)は C_2 の二次方程式となるので、これを解 けば C_2 を得ることができる。そこで、吸着速度 は、ある濃度 C_1 が与えられた時点での吸着平衡 に達するまでの吸着量に比例すると仮定し、以 下の式を用いて吸着速度を表現することとした。

$$\frac{\partial V}{\partial t} = k_2 (C_1 - C_2) L \tag{10}$$

式(10)が吸着速度 q₂ であり, k₂ を吸着速度係 数として与えた。以上のモデルを用いて拡散セ ル中の Cl⁻の反応・移動ならびに吸着をシミュレ ーションした。

3.3 解析結果

拡散実験を行った供試体を解析対象とし,空間に対しては有限要素法を,時間に対してはク ランク・ニコルソン差分を用いて計算を行った。 図-6にメッシュ図を示す(拡散セルの詳細に ついては図-1を参照)。また,拡散セルの詳細に ついては図-1を参照)。また,拡散セルの対称 性を考慮して,全体の1/4についてのみ解析を行 った。要素の大きさは0.2×0.2×0.2(cm)とし,時 間増分 dt は1(day)とした。セル溶液と接する, 供試体の中央から半径2.5cmの部分には境界条 件として以下の流束qを与えた。

ここで、 α :伝達係数(cm/day) C_B :セル溶液の Cl^- 濃度(mmol/cm³)

また、フリーデル氏塩の生成による限界塩素 固定量に関しては、C₃A 量のうち未水和のもの が 20%存在すると仮定して計算した。未水和 C₃A が 20%存在することは考えにくいが、本研 究ではモノサルフェートの寄与を考えていない ため、未水和 C₃A 量を大きく設定した。表-1

図-6 メッシュ図

の鉱物組成よりセメント 1g あたりの限界塩素固 定量を計算すると, NC では0.43(%/g of cement), EC では0.72(%/g of cement)となる。C-S-H への吸 着による限界塩素吸着量に関しては,まずセメ ントに含まれる C₃S, C₂S の量から C-S-H の生成 可能な量を計算した。しかし C-S-H の全量が吸 着に寄与するとした場合,限界塩素吸着量が非 常に大きな値となるため,20%が吸着に寄与する と仮定した。前述の飽和吸着量(172mg/g of C-S-H)を用いて計算を行えば,セメント 1g あた りの限界塩素吸着量は,NC では 3.98(%/g of cement), EC では 3.35(%/g of cement)となる。よ って固定可能な Cl⁻量は,NC では 4.41(%/g of cement), EC では 4.07(%/g of cement)となる。

その他の解析に用いた変数は,表-3にまと めて示す。初期液相体積比,初期固相体積比は 液相体積あるいは固相体積を全体の体積で除し たものであるが,ECの液相体積をNCよりも若 干大きく設定した。フリーデル氏塩の生成速度 係数,吸着速度係数および拡散係数については,

	実験結果	解析条件							
	拡散係数 (cm ² /sec)	拡散係数 (cm ^² /sec)	フリーデル氏塩の 生成速度係数 (cm ⁶ /mmol/day)	吸着速度係数 (day ^{−1})	初期 固相体積比	初期 液相体積比			
NC	3.43×10^{-8}	2.78×10^{-6}	0.915	0.008	0.91	0.09			
EC	8.26×10^{-8}	5.56×10^{-6}	0.915	0.001	0.88	0.12			

表-3 解析に用いた変数

実験値と解析値を比較し、感度解析を行うこと により決定した。なお、フリーデル氏塩による Cl⁻の固定速度が吸着による固定速度を上回る ような速度係数を設定している。また、C₃Aの 固相濃度については、**表-2**に示したコンクリ ートの配合および固相体積を用いて計算した。

図-7に供試体から純水側セル中への Cl⁻流 出量を,図-8に NaCl 溶液側セルから供試体中 への Cl⁻流入量を示す。Cl⁻流出量については実 験値と解析値はほぼ一致している。一方で Cl⁻ 流入量に関しては,実験値に直線的な増加が見 られるのに対して,解析値は時間の経過ととも に流入量の増加が減少する傾向が見られ,グラ フの増加挙動が異なる結果となった。しかしな がら,値に大きな差はなく,本研究で用いたモ デルはある程度の妥当性があると考えられる。

本研究では、フリーデル氏塩の生成は未水和 C₃Aのみによると仮定したが、実際にはモノサ ルフェートの寄与を考えなければならない。ま た、C-S-HへのCl⁻の吸着に関しても、解析条件 においてNCの吸着速度係数はECの8倍という 結果となっており、さらに詳細な吸着性状の解 明、ならびにモデルの検討が必要である。

4. 結論

本研究では、フリーデル氏塩の生成速度およ び C-S-H への塩化物イオンの吸着速度について モデル化を行い、コンクリート中における塩化 物イオンの反応・移動現象を表現することを試 みた。その結果、ある程度モデルに妥当性があ ることが確認できたが、C-S-H の吸着性状やモノ サルフェートの反応性状について今後さらなる 検討が必要である。

図-8 供試体中への Cl⁻流入量

参考文献

- 平尾宙、山田一夫、高橋春香:セメント水和 物による塩化物イオンの固定化挙動、第 57 回セメント技術大会講演要旨, pp.128-129, 2003
- 中村明則ほか:ケイ酸カルシウム水和物による塩化物イオン,硫酸イオンおよびリン酸イオンの収着,日本化学会誌, No.6, pp.415-420, 1999

-866-