論文 衝撃落下による材料分離と打込み欠陥を低減できる材料・調合 の評価に関する研究

小島 正朗*1·三井 健郎*2

要旨:コンクリートを型枠内に打込む際に,打込み欠陥ができにくい材料・調合を判定する 評価手法を実験的に検討した。コンクリートが鉄筋に衝突して落下するときの粗骨材の分離 のしやすさは,調合上の粗骨材量と相関が高く,また締固めによる打込み欠陥の修復のし やすさは,振動スランプフロー試験におけるスランプフロー速度と相関があることが明ら かになった。打込みによる初期欠陥のできやすさと,欠陥の修復のしやすさおよび骨材分 離のしにくさの3つの側面から総合的に評価することにより,打込み欠陥の低減しやすい 材料・調合の判定が可能であると考えられた。

キーワード:打込み欠陥,骨材分離,振動フロー試験,振動フロー速度,分離係数

1.はじめに

型枠内にコンクリートを打ち込む際,コンク リートは鉄筋に衝突しながら落下し,粗骨材が分 離して偏在すると締固めを行っても柱脚,壁下部 には打込み欠陥が生じやすい。打込み時の骨材の 分離や,バイブレータによる締固め効果,締固め に必要な振動加速度などの研究はなされている が,打込みによる初期欠陥のできやすさや締固め による修復のしやすさと材料・調合の関係を検討 した研究は少ない。本研究では,コンクリートの 材料・調合と打込み欠陥の関係について実験的に 検討し,打込み欠陥の低減できる材料・調合の評 価法について検討した。 骨材の粒度分布を図-1に示す。コンクリートの調 合を表-3に示す。水セメント比は55%,空気量 4.5%一定とした。練り混ぜには50ℓパン型ミキサ を使用した。1バッチの練り量を35ℓとして,セ メント,細・粗骨材を15秒空練りした後注水し, 120秒練り混ぜた。同一調合を連続して2バッチ 練り混ぜ試験を行った。

表-1 実験因子と水準

因子	水 準								
細骨材種類	3 水準	海砂+砕砂,山砂 A ,山砂 B							
スランプ	3 水準	丰 15,18,21cm							
細骨材率	4 水準	42 , 47 , 52 , 57%							
混和剤種類	2 水準	AE 減水剤,高性能AE 減水剤							

2.実験概要

2.1 実験因子と水準

実験因子と水準を表-1に示 す。粗骨材は一種類とし,細骨 材は海砂+砕砂,粒度の異な る山砂2種類の計3種類とし た。

2.2 使用材料,コンクリートの調合および練り混ぜ

使用材料を表 -2 に示す。細

表-2 使用材料

_ セメント ・普迪ホルトランドセメント 密度 3.16 g/cm ³	
海砂 海砂 + 砕砂(5:5):表乾密度 2.53g/cm ³ ,吸水率 2.35%, F	M2.74
+ ・海砂:表乾密度 2.52g/cm ³ ,吸水率 2.24%, FM2.46	
砕砂 ・砕砂:表乾密度 2.53g/cm ³ ,吸水率 2.45%, FM3.01	
細 山砂A(細:中:粗=0.35:0.20:0.45 混合)	
材 山砂B(細:中:粗=0.45:0.20:0.35混合)	
│	
・細目砂:表乾密度 2.60g/cm³,吸水率 2.26%,FM1.59	
・中目砂:表乾密度 2.57g/cm³, 吸水率 2.13%, FM2.92	
・粗目砂:表乾密度 2.56g/cm ³ ,吸水率 1.70%, FM4.16	
_{44 思 + t} 5 号 + 6 号砕石(5 : 5)	
^{121 頁 121} :表乾密度 2.62g/cm ³ , 吸水率 0.88%, FM6.67, 実積率	58.1%
化学混和剤 AE 減水剤(リグニンスルフォン酸系), 高性能 AE 減水剤(ポリカルポン酢	资系)

*1(株)竹中工務店技術研究所建設技術開発部 工修 (正会員)

*2(株)竹中工務店技術研究所建設技術開発部 主席研究員 工修 (正会員)

2.3 コンクリートのフレッ

シュ性状の評価実験

(1)試験項目および試験方法

打込み欠陥のできにくいコ ンクリートの判定に有効な試 験方法の検討を目的に,以下 の(a)~(c)の試験を実施した。

(a)スランプ試験 , スラン プフロー試験

スランプ試験はJIS A 1101, スランプフロー試験はJIS A 1150により実施した。同一調 合に対し2回試験を実施した。

(b)振動ロート試験

図-2の形状のV型ロート (幅100mm)にコンクリートを

軽く突き棒でつきながら充填し,2台の振動モー ター(KM3S-2P,50Hz,起振力0.26kN)で加振を開始 してから5秒後に下部のシャッターを一気に開い て自由落下させた。シャッターを開いてから完全 に試料が流下するまでの時間を計測した。同一調 合のコンクリートに対し,3回の試験を行った。

(c)振動フロー試験

図-3に示す振動テーブルにスランプ,スランプ フロー試験終了後の試料をスランプ板ごと静かに 載せ,振動モーター(KM3S-2P,50Hz,起振力 0.26kN)により加振を開始した時点からフローが 50cmに到達するまでの時間を計測した。50cmか ら初期のスランプフローを減じ,その1/2の距離 を計測時間で除して振動フロー速度(cm/s)を求め た。なお,振動モーター起振力は,予備試験によ り調整した。

2.4 鉄筋への衝突による材料分離の実験

(1)実験方法

鉄筋に衝突するコンクリートの分離のし易さの 評価および振動締固めによる打込み欠陥の低減の しやすさの評価を目的に実験を行った。試験装置 を図-4に示す。鉄筋の空き間隔,角度,段数を変 化させて予備試験を行い,1mの落下高さでコンク リートが適度に分離する条件(@70mm,水平とな

No	細骨 材	スランプ	空気量	W/C	S/a	粗骨材 かさ容積	単	混和剤				
	種類	(cm)	(%)	(%)	(%)	(m^3/m^3)	水 セメント 細骨材粗骨材					
1-1		15			47	0.62	176	320	804	939		
1-2		10			52	0.56	177	322	888	849		
1-3					42	0.68	175	318	720	1030	SP	
1-4	海砂				47	0.61	182	331	793	926		
1-5	+	18	4.5	55.0	52	0.55	184	335	873	835		
1-6	砕砂				52	0.53	201	365	838	801	AE	
1-7					57	0.49	190	345	944	737		
1-8		21			47	0.60	187	340	784	915	SP	
1-9		21			52	0.54	190	345	861	823		
2-1		15			52	0.58	160	290	943	883		
2-2		15			57	0.51	166	302	1018	780		
2-3				55.0	47	0.63	172	313	828	948	AL.	
2-4	山砂A	18	4.5		52	0.58	162	295	937	878		
2-5		10			52	0.58	160	290	943	883	SP	
2-6					57	0.51	171	311	1007	771	ΔF	
2-7		21			52	0.56	174	315	913	856		
3-1		15			47	0.64	164	298	845	966		
3-2					42	0.69	169	307	746	1045		
3-3	山砂B	山砂 B	18	4.5	55.0	47	0.63	172	313	829	948	AE
3-4				52	0.56	175	318	911	853			
3-5		21			47	0.62	178	324	818	935		

長_3 コンクリートの調会

図 - 3 振動フロー試験

 -5
 21
 47
 0.62
 178
 324
 818
 935

 混和剤
 SP:高性能 AE 減水剤(セメント量×1%)、AE:AE 減水剤(セメント量×0.25%)

 100

す角50°、2段配置)を決定した。

鉄筋上部に設置したコンクリート投入用ロート は振動ロート試験と同じであり,振動ロート試験 と兼用した。投入量は1回13.5ℓ,3回繰り返し て合計40.5ℓのコンクリートを自由落下させた。 鉄筋に衝突して飛散したコンクリートを回収し, 鉄筋に衝突しながら鉄筋間を通過したコンクリー トは下部の内寸125 × 300 × 高さ250mmの型枠4 体(ウレタン塗装合板)に打込んだ。

(2)測定項目および測定方法

(a) コンクリートの分離係数

鉄筋に衝突して分離した飛散コンクリートの重 量,飛散コンクリートのうち5mmふるいに残る骨 材量を測定し,吉本らの研究¹⁾を参考に式(1)によ り分離係数を求めた。

分離係数 = (G_A - G₀) M_A / M₀ (1) M_A, G_A: 飛散コンクリートの重量および 飛散コンクリートの粗骨材比

M_{0,}G₀:落下させたコンクリートの全量およ び調合上の粗骨材比

分離係数は,元のコンクリートに対する飛散コン クリートの粗骨材率の増分に,前落下コンクリー ト量に対する飛散量の比率を乗じた値である。

(b) コンクリート表面の充填率

図-4 試験装置

	細骨材 種類	スランフ ゜ (cm)	S/a (%)	混和 剤	フレッシュ性状の評価試験					分離試験				充填性試験						
No					スランプ (cm)	70- (cm)	フロー/スラ ンプ	振動 u- ト 流下時 間(s)	振動7 ロー速度 (cm/s)	飛 散 コ 全体 量 ^{Ma}	飛散粗 骨材比 Ga	調合粗 骨材比 Go	分離係 数 (×10 ⁻²)	初期充 填率 (%)	最終充 填率 (%)	締固効 果係数				
1-1		15	47		14.3	25.9	1.82	16.8	0.53	4.98	0.84	0.42	2.1	30.5	75.9	-0.06				
1-2		15	52	SP	13.8	24.6	1.79	23.7	0.43	4.07	0.82	0.38	1.8	27.9	68.7	-0.06				
1-3			42		20.3	38.3	1.89	7.1	0.55	6.11	0.87	0.46	2.5	31.9	74.4	-0.18				
1-4	海砂		47		20.3	35.9	1.77	11.2	0.72	4.28	0.83	0.41	1.7	31.2	68.4	-0.20				
1-5	+	18	52		18.3	30.4	1.66	4.7	0.70	3.25	0.80	0.37	1.4	58.3	85.3	-0.24				
1-6	砕砂		52	AE	19.3	30.3	1.57	2.7	0.97	1.52	0.80	0.36	0.6	79.6	96.6	-0.16				
1-7			57	57 47 SP	18.5	28.1	1.52	7.4	0.58	2.20	0.75	0.33	0.9	62.0	94.1	-0.06				
1-8		21	47		20.8	37.6	1.81	4.1	1.12	3.93	0.82	0.41	1.6	78.4	94.9	-0.06				
1-9		21	52		21.5	33.4	1.55	3.4	0.71	3.02	0.78	0.37	1.2	66.8	92.1	-0.22				
2-1		15	52		14.0	24.6	1.76	21.3	0.74	4.34	0.79	0.39	1.7	29.6	75.4	-0.12				
2-2		15	57	AE	14.5	26.0	1.79	6.3	1.04	2.07	0.73	0.34	0.8	43.8	98.2	-0.56				
2-3			47		20.0	37.4	1.87	7.9	1.26	6.45	0.83	0.42	2.6	48.5	85.3	-0.17				
2-4	山砂A	10	10	18	18	18	52		17.8	29.4	1.65	9.5	1.01	4.88	0.78	0.39	1.9	33.8	84.4	-0.09
2-5		10	52	SP	16.3	26.6	1.64	18.4	0.39	5.59	0.78	0.39	2.1	27.3	77.7	-0.06				
2-6			57		19.0	30.5	1.61	2.7	1.09	1.85	0.76	0.34	0.8	89.3	99.2	-0.21				
2-7		21	52		21.0	34.8	1.65	2.7	1.50	3.49	0.80	0.38	1.4	82.2	97.4	-0.17				
3-1		15	47		14.5	24.0	1.66	20.8	1.16	3.53	0.79	0.42	1.2	34.5	86.4	-0.18				
3-2			42		19.0	31.4	1.65	7.3	1.32	5.53	0.85	0.46	2.1	35.0	98.1	-0.08				
3-3	山砂B 18 21	18	47	AE	19.5	30.5	1.56	3.6	0.84	2.39	0.82	0.42	0.9	61.9	97.7	-0.21				
3-4				52		18.8	29.4	1.57	3.1	1.08	1.34	0.77	0.38	0.5	72.4	98.3	-0.10			
3-5		21 47		21.0	34.9	1.66	2.5	1.33	3.12	0.82	0.41	1.2	77.3	99.1	-0.12					

表 - 4 試験結果一覧

自由落下によりコンクリートを充填した4個の 型枠に対し,図-4に示すよう1体は締固め無しと し,残る3体を図-3に示す振動テーブルでぞれぞ れ10秒,30秒,90秒間締固めた。コンクリート の硬化後に型枠を解体し,A~Dの4面のコンク リートの充填状況を写真に記録した。未充填部と 充填部に2値化し,各面について充填部の面積割 合を充填率を求めた。締固め時間と充填率の関係 を式(2)の締固め関数²⁾にあてはめ,非線形最小2 乗近似によりC₀(初期充填率),C_m(最終充填率),-G·t·f·k(締固め効果係数)を求めた。

 $C = C_m - (C_m - C_0) \cdot \exp(-G \cdot t \cdot f \cdot k)$ (2)

ここで,C:締固め度,C₀,C_m:初期および可 能な最大締固め度,G:振動加速度(g),t:締固 め時間(s),f:ワーカビリティーに関わる係数, k:定数(1/s)

3.実験結果および考察

表-4に試験結果一覧を示す。

3.1 コンクリートのフレッシュ性状

図 -5 にスランプとスランプフローの関係を示 す。スランプが同等でも材料・調合によりスラン プフローは 4cm 程度の違いがあった。

図 -6 にスランプと振動フロー速度の関係を, 図 -7 にスランプと振動ロート流下時間の関係を 示す。スランプが同等でも振動下での変形速度で ある振動フロー速度や振動ロート流下時間は広範 囲な値となっており,振動下での変形のしやすさ は大きく異なる。スランプだけでコンクリートの フレッシュ性状の評価を行うことは困難であり, 加振時の変形特性なども含めて評価する必要があ ると考えられる。

3.2 鉄筋衝突による骨材分離

図 -8 に粗骨材かさ容積と分離係数の関係を示 す。いずれの細骨材を使用した調合でも,粗骨材 かさ容積が多いほど分離係数は大きくなった。細 骨材種類による差異もみられ,山砂Bは他の骨材 と比べて分離係数が小さい傾向であった。

3.3 締固めによる充填率の変化

図-9に打設面の観察の一例を示す。図-10に調

合 2-1 の場合の,締固め時間と試験体の A ~ D 面 の充填率の関係を一例として示す。コンクリート の落下中心に近く流動元となる B 面,D 面の充填 率は大きく,流れの下方向となる A 面,C 面の充 填率は B 面,D 面より小さかった。いずれの材料・ 調合においても同様の傾向であり,A 面,C 面の充 填率は材料・調合による差異が大きかった。充填 状況が実部材に近いと考えられる A 面,C 面のう ち面積の大きいA 面を対象として,式(2)の締固 め関数にあてはめて回帰係数を求めた。図-11 に 締固め時間と充填率の関係を得られた締め固め曲 線の一例を示す。表-4 に回帰分析により得られた 初期充填率,最終充填率,締固め効果係数を示す。 いずれの場合も締固め関数の形で良く近似でき た。

図 -12 に初期充填率と最終充填率の関係を示 す。振動フロー速度が小さい海砂 + 砕砂を細骨材 とした調合では,同じ初期充填率に対して得られ る最終充填率は他の細骨材を用いた調合より小さ い傾向がある。材料・調合に起因する充填性の違 いを評価することができる判定手法が必要と考え られる。

3.4 打込み欠陥の改善に影響を及ぼす材料・調 合の評価法

(1)初期充填率

図-13にコンクリートの各種フレッシュ性状評価指標と、初期充填率および最終充填率の関係を示す。スランプ18cm以下では初期充填率が低くなっている。また、振動ロート流下時間が短いほど初期充填率は大きくなっている。振動ロート流下時間が短いと、単位時間あたりの落下物の質量が大きいため、衝撃により締固められることが一因と考えられる。

(2)最終充填率

最終充填率は3つの指標のうち,振動フロー速 度と正の相関が認められる。加振による流動のし 易さが充填率の向上に影響する要因の1つと考え られる。

打込み欠陥を低減できる材料・調合を判定する には,初期欠陥できにくさ,加振による欠陥の修

復のしやすさ、衝撃落下時の骨材の分離のしにく さの側面から総合的に評価する必要があると考え られる。一例として初期欠陥のできにくさの指標 としてスランプ,欠陥の修復のしやすさの指標を 振動フロー速度,骨材分離のしにくさの指標を1/ 分離係数とし,各指標を乗じて求めた総合指標と 最終充填率の関係を図-14に示す。スランプ×振 動フロー速度 / 分離係数の値がある閾値を超える と最終充填率は95%以上と大きくなり,それ以下 では最終充填率は急激に低くなる。このような総 合指標を用いることにより,一定の締固め条件の もとで打込み欠陥を低減しやすい材料・調合の判 定が可能になると考えられる。総合指標は,分離 係数を粗骨材かさ容積等により推定すれば,従来 のスランプ試験と,比較的に容易な振動フロー試 験のみから得ることができるため,比較的容易に 材料・調合の評価に適用できると考えられる。

4.まとめ

衝撃落下による材料分離と締固め打込み欠陥の でき易さの判定手法を実験的に検討した結果,実 験の範囲で以下の知見が得られた。

- (1)衝撃落下による材料分離は粗骨材量の影響が 大きい。
- (2) 振動フロー速度が大きいほど締固めによる充

填率の向上は大きく,打込み欠陥は修復され やすいと考えられる。

(3)初期欠陥のできにくさ,加振による欠陥の修 復のしやすさおよび材料分離のしにくさを総 合的に評価することにより,打ち込み欠陥の 低減しやすい材料・調合の判定が可能である と考えられる。

参考文献

- 1) 吉本彰,湯口啓:落下によるコンクリートの分離-その測定法と2,3の実験,セメント・コンクリート,No.282,pp.22-29.1970
- 2)Kolek J:Reserch on the vibration of fresh concrete, Reports Conference on Vibrations Compaction Tequniques 1963