論文 2径間ラーメンボックスカルバートの温度応力に対する誘発目地間 隔と形状の検討

神崎 浩二*1・米澤 朗*2・樋口 晃*3・村上 祐治*4

要旨:新若戸道路(仮称)の陸上トンネル部(若松側)はボックスカルバートの形状をして おり、部材の厚さが1,300mm 程度のマスコンクリート構造物である。本構造物は、そのほと んどが地下構造物であるが、海上に近接しているため、耐久性からみた場合の補修の要否に 関するひび割れ幅の限度を0.2mmと設定し、ひび割れ発生危険度の評価方法として、最小ひ び割れ指数が1.2以上となるひび割れ制御方法を検討した。本論文では、温度応力解析結果 からL=15.0m ピッチの誘発目地材配置と打込み半日後から7日間のパイプクーリング、誘発 目地試験により目地材配置部の構造物断面欠損率を62%とする必要性を結論付けた。 キーワード:温度ひび割れ指数、目地間隔、誘発目地、パイプクーリング、断面欠損率

1. はじめに

新若戸道路(仮称)は,響灘大水深コンテナ ターミナル供用開始に伴い増大する交通の円滑 化を図るため,北九州市若松区安瀬〜戸畑区川 代間約4.2kmに建設中の自動車専用道路である。

本構造物の建設地点は,図-1に示すように 洞海湾に近接しているため、コンクリート中へ の塩化物イオン浸入による鉄筋の不動態皮膜破 壊から,鉄筋腐食を起こす可能性がある。また, 本構造物は、図-2に示すように底版・側壁・ 頂版の厚さが1.3m, ボックス外形が幅36.3m, 奥行き 45.0m, 高さ 10.9m あり, 部材寸法が大 きなマスコンクリート構造物である。このよう な構造物の場合には地盤や既設コンクリートが 拘束体となり, 温度ひび割れが発生する可能性 が高いとされている^{例えば,1)}。そこで,温度応力 解析により、各部位の最小ひび割れ指数が 1.2 以上となる誘発目地の配置間隔とコンクリート 打込み後の養生方法について, 誘発目地試験に より、目地周辺部にひび割れが発生し易い断面 欠損率を有する目地形状について検討した。

*1 (株)間組 九州支店土木部新若戸作業所 主任 (正会員)
*2 国土交通省 九州地方整備局北九州港湾・空港整備事務所 所長
*3 国土交通省 九州地方整備局北九州港湾・空港整備事務所 係長
*4 (株)間組 技術・環境本部技術研究所土木研究室 チームリーダー (正会員)

2. 温度応力解析

底版および側壁, 頂版について, 地盤を含め てモデル化し, 温度については有限要素法, 応 力については CP 法によって解析する。なお, 温 度応力の計算には, 非線形構造解析プログラム 「ASTEA-MACS for Windows Ver. 2」を使用した。 また, コンクリートの諸条件は,「新若戸道路陸 上トンネル部に使用する低熱ポルトランドセメ ントを用いたコンクリートの配合検討書, 平成 15年4月」の結果を用い, 不明な点は土木学会 コンクリート標準示方書 2002 年度版施工編に 基づいて仮定し, 地盤については, トンネル標 準示方書開削工法編の値を用いた。

2.1 解析条件

(1) 検討ケース

温度応力解析にあたり,予備検討を実施した。 検討ケースを下記に示す。

ケース1:目地なし L=45.0m

ケース2:ひび割れ誘発目地8箇所設置 目地間隔 L=5.0m

(2) 解析モデル

解析モデルは、厳密には対称でないが、非対称性が解析結果に与える影響は小さいことを考慮して、中壁中心までの1/2モデルとして解析する。解析モデル、および温度解析における境界条件を図-3に示す。

(3) 打込みのスケジュール

ボックスカルバートの打込みスケジュールお よびコンクリートの打込み温度を**表-1**に示す。

(4) 外気温

2002 年度版理科年表下関の気象観測データ をもとに,1971 年~2000 年における下関の月別 平均気温を式(1)に近似し解析時の外気温とし た。解析時外気温として図-4に示す。

 $T(t)=16.2+9.6*sin(2\pi (t/24-106)/365)$ (1)

(5) 熱的物性值·力学的物性值

コンクリートは低熱ポルトランドセメントを 使用し,セメント量および水セメント比はそれ

表-1 打込みのスケジュール

リフト	部位	打込 み日	打込み温度 (℃)
1	底版	7/5	27.5
2	側壁·中壁	9/10	27.2
3	側壁·中壁·頂版	11/25	15.1

図-4 解析時外気温

ぞれ,285kg/m³,55.0%である。コンクリートと 地盤の熱的・力学的物性値を**表-2**に示す。

(6) 構造物の養生方法

コンクリートの養生方法の相違により,気相 と固体の熱のやり取りを表す熱伝達率の値が変 わってくる。各熱伝達境界の熱伝達率の値を設 定し,以下の養生方法を選定した。

- ・型枠面:打込みから7日間までは鋼製型枠 を設置した状態で、その後脱枠(14W/m²℃)
- ・コンクリート上面:打込みから7日間までは 散水養生,その後撤去(14W/m²℃)

2.2 温度ひび割れ指数の目標値²⁾

ひび割れ発生危険度の評価は,温度ひび割れ 指数によって行う。標準的な温度ひび割れ指数 を参考値として以下に示す。

- a) ひび割れを防止したい場合:1.5以上
- b) ひび割れの発生をできるだけ制限したい場合:1.2以上
- c) ひび割れの発生を許容するが,ひび割 れ幅が過大とならないように制限した い場合:0.7以上

本構造物は、そのほとんどが地中構造物であ るため、施工後のひび割れ発生によるメンテナ ンスが困難であると考えられる。よって、温度 ひび割れ指数は、b)のひび割れの発生をできる だけ制限したい場合の1.2以上を目標とした。

2.3 解析結果

温度ひび割れ解析結果を温度・温度応力・履 歴図とし、評価としてひび割れ指数を表-3に まとめた。解析の結果より、

a) ケース1:低熱ポルトランドセメントを用い た場合,底版および3リフト側壁部2・中壁2・ 頂版においては,ひび割れの発生をできるだけ 制限したい温度ひび割れ指数 Icr=1.2 以上と なり,ひび割れが発生したとしても軽微なひび 割れが予測される。2 リフト側壁部 1・中壁 1 においては,ひび割れ発生の可能性が非常に高 いことが予測される。

b) ケース2: ひび割れ誘発目地を8箇所設置した場合においても,2 リフト側壁部 1・中壁 1

は,ひび割れ発生をできるだけ制限するにまで 至らないという結果であった。

表-2 コンクリートの熱的・力学的物性値

物性値	単 位	底版・側壁・頂版 低熱ポルト ランドセメント 30-12-20-L	地盤	
熱伝導率	₩/m°C	2.7	3.45	
比熱	kJ/kg°C	1.16	0.8	
単位体積 重量	kg/m^3	2,317	1,640	
	(基本式)	$Q(t) = Q \propto (1 - e^{-\alpha t})$		
断熱温度 上昇式 (打込み 20℃の	単位セメ ント量 (kg/m ³)	285	_	
例)	(Q_{∞}) °C	36.6		
	(α)	0.289		
熱膨張 係数	$\times 10^{-6}$ /°C	10	10	
ポア ソン比	_	- 0.135		
圧縮	f'c(28) (N/mm ²)	35.1		
強度	f'c(91) (N/mm ²)	49.0	_	
有効 ヤング 係数	N/mm ²	Ee= ϕ (t) × 5800 (f' c (t)) ^{0.5} ϕ (t < 3 \exists) =0.73 ϕ (3 \exists \leq t < 5 \exists) =0.73~1.0 ϕ (t \geq 5 \exists) =1.0	30	
引張 強度	$\mathrm{N/mm}^2$	$ft(t)=0.26 \times (f'c(t))^{0.7}$		

表-3 解析結果比較表

1	(ース		ケース1 L=45.0m ケース2 L=5.0m						ケース2 L=5.0m						
リフト	部	位	最大 温度 (℃)	材齢 (日)	最大 応力 (N/mm2)	材齢 (日)	最小ひ び割れ 指数	ひび割 れ発生 確率	材齢 (日)	最大 温度 (℃)	材齢 (日)	最大 応力 (N/mm2)	材齢 (日)	最小ひ び割れ 指数	ひび割 れ発生 確率	材齢 (日)
1	底版	内部	45.7	3.7	2.6	146.3	1.71	1 (%)	146.3	45.7	3.7	0.8	69.7	4.94	0 (%)	69.7
1	部	表面	33.1	3.0	1.9	146.3	2.32	0 (%)	146.3	33.1	3.0	0.3	5.3	3.09	0 (%)	3.7
0	側壁	内部	41.6	2.7	4.5	78.7	0.77	80 (%)	14.7	41.6	2.7	3.1	78.7	0.97	51(%)	14.7
4	部1	表面	29.0	2.0	3.6	79.0	1.06	42(%)	78.7	29.0	2.0	2.2	79.0	1.58	3 (%)	13.3
0	中壁	内部	39.1	2.3	4.1	79.0	0.86	70(%)	13.3	39.1	2.3	2.6	79.0	1.12	48(%)	12.0
4	1	表面	28.8	2.0	3.4	79.0	1.14	47 (%)	79.0	28.8	2.0	1.9	79.0	1.76	1 (%)	12.0
2	側壁	内部	27.2	3.0	1.4	29.3	1.66	2 (%)	16.0	27.2	3.0	1.2	29.3	1.94	0(%)	16.0
3	部2	表面	22.7	187.0	0.6	21.3	3.70	0 (%)	14.7	22.7	187.0	0.4	18.7	5.32	0 (%)	12.0
0	中壁	内部	24.8	2.3	1.0	18.7	1.98	0 (%)	13.3	24.8	2.3	0.8	16.0	2.31	0(%)	12.0
3	2	表面	22.8	187.0	0.4	13.3	3.90	0 (%)	10.7	22.8	187.0	0.3	9.3	4.54	0 (%)	8.0
0	TH H다	内部	27.2	3.0	1.0	26.7	2.32	0 (%)	18.7	27.2	3.0	0.6	187.0	6.50	0 (%)	14.7
3	項版	表面	22.7	187.0	0.2	16.0	8,44	0 (%)	13.3	22.7	187.0	0.1	4.7	14, 53	0 (%)	4.0

2.4 ひび割れ制御対策の検討

以上のように、低熱ポルトランドセメントの 使用および誘発目地設置間隔 L=5.0m のみの対 応では、目標としている温度ひび割れ指数 1.2 以上をクリアすることが不可能であったため、 本構造物においてはひび割れの発生を許容する ものの、有害なものにならないよう他の制御対 策を実施することが妥当であると判断された。

温度ひび割れ制御対策の検討は、最小ひび割 れ指数を示している2リフト側壁部を対象に行 った。対策としては、

- a) プレクーリング
- b) 2 リフトのみのパイプクーリング

c) 目地間隔

の a) ~c)項目を組合わせ,温度応力解析を実施 した。b)パイプクーリングについては,2 リフ トの各壁に2本ずつ2段(上下間隔1m)水平に 配置し,単位体積あたりのクーリング本数を合 わせ解析する。追加検討ケースを表-4に示す。 なお,冷却管の径および流量は,直径1インチ の鋼管を用いることとし,毎分15 リットルと設 定する。また,通水期間は最大温度到達時間の 3 日間と設定した。パイプへの吸熱度合は,節 点と固定温度との熱伝達率として田辺ら³⁾の研 究式である式(2)を用いて,パイプ壁面とコンク リート面間の熱伝達率として与えた。

熱伝達率:h(W/m²・℃)=552×u+50 (2)

2.5 ひび割れ制御対策の決定

図-5に示すように、目標値である温度ひび 割れ指数 1.2 以上となるのは、パイプクーリン グ(24.5℃)の目地間隔 L=17.6m 以下となるケ ース 5, 6, およびパイプクーリング(19.5℃) の目地間隔 35.4m 以下となるケース 8, プレク ーリングを実施するケース 9, 10 であった。こ れらについて検討すると、プレクーリングの施 工は可能であるが、コスト的に高価なものとな り、これも高価なものとなる。よって、2 リフ トの打込み時期 9月の北九州市水道水温 24.5℃

表-4 追加検討ケース項目

			対	策	
ケース	セメ ント	目地 (m)	パイプク ーリング 水温(℃)	プレクー リング	打込み 温度 (℃)
ケース3	低熱	45.0	24.5	-	27.2
ケース4	低熱	20.0	24.5	—	27.2
ケース5	低熱	10.0	24.5	_	27.2
ケース6	低熱	5.0	24.5	_	27.2
ケース7	低熱	45.0	19.5		27.2
ケース8	低熱	5.0	19.5		27.2
ケース9	低熱	45.0	_	0	15.0
ケース10	任埶	5.0	_	\cap	15 0

図-5 目地間隔と温度ひび割れ指数の関係

で直接冷却するパイプクーリングと施工上安全 側である L=15.0m 間隔の誘発目地設置を採用し た。なお、給水方法としては、施工時の型枠解 体材齢に合わせ打設半日後より7日間の1次ク ーリングのみを流速 v=15cm/sec にて実施する。

3. 誘発目地試験

森本ら⁴⁾によると,誘発目地の断面欠損率を 50%程度に増加させると,誘発目地以外でのひび 割れは減少させることが可能である。また,誘 発目地の間隔と誘発目地以外で生じたひび割れ の幅とは密接な関係があり,誘発目地の間隔が 小さくなるにしたがい,ひび割れ幅は減少する。

誘発目地の形状によっても目地周辺部に発生 する応力度が相違し,有利な誘発目地の形状が あるとされている。そこで,**表**-5に示すよう な誘発目地に関する項目を検討することとした。

3.1 試験方法

(1) 誘発目地試験の形状寸法

誘発目地試験には、低熱ポルトランドセメン トを用いたコンクリートを使用する。配合を表 ー6に示す。試験体は、図ー6に示すドーナツ 型のコンクリート試験体とする。図中の番号は、 誘発目地ライン上のコンクリートひび割れを重 点的に観察する点として印している。

試験体は,内径 900mm,外径 1,900mm,高さ 200mm とし,コンクリートの断面は長さ 500mm ×高さ 200mm とする。1体の試験体に同じ断面 欠損率となるA~Dシリーズの4種類の誘発目地 を設置し,断面欠損率別に5種類の試験体を製 作した。ドーナツ型コンクリート試験体を選定 したのは以下のような理由である。

ドーナツ型のコンクリート試験体が収縮する と、内径の鋼製リングにより収縮が拘束され、 試験体円周方向に引張応力が生じる。このため、 半径方向に目地板を配置すれば、引張応力によ る目地板の形状、目地板の断面欠損率などの検 討を行うことができるためである⁴。

(2) 試験内容

コンクリート打込み後,施工工程に合わせ 7 日間濡れスポンジを表面にかけ養生する。湿潤 養生完了後,乾燥を開始する。

乾燥を開始しても内側型枠,外側型枠を脱型 せず,一面乾燥状態を作る。ドーナツ型コンク リート試験体は,乾燥直後から1日2回程度観 察を行い,ひび割れの発生状況を確認する。

3.2 試験結果

7 日間のスポンジ養生完了後, コンクリート を一面乾燥状態にし, 表面のひび割れ発生状況 を観測した。結果を図-7に示す。一面乾燥開 始直後となる1日目には, 断面欠損率 62%の B シリーズ(1,2), Dシリーズ(1), 72%のBシリー

表-5 誘発目地試験の検討項目

項目	種類
断面欠損率	32%, 42%, 52%, 62%, 72%
形状	4 種類(A~D シリーズ)
ひび割れ	発生状況,発生期日,発生数

図-6 誘発目地の検討に使用する試験体

図-7 ひび割れ発生時系列図

ズ (1,2), Cシリーズ(1~3), Dシリーズ(1,4) の誘発目地ライン上に, それぞれへアクラック が発生したが, 明瞭なひび割れであると判断可 能なものになるまでに 23 日間の期間を要した。 断面欠損率 62%の B, Dシリーズ, 72%の B, C, D

表-6 低熱ポルトランドセメントを用いたコンクリートの配合表

шЪ	粗骨材の	スラ	水セメン	空気	細骨材		単位量	(kg/m3)		高性能AE
配合	最大寸法	ンプ	ト比W/C	量	率s/a	水	セメント	細骨材	粗骨材	減水剤
作里天只	(mm)	(cm)	(%)	(%)	(%)	W	С	S	G	Ad (%)
低熱	20	12	55	4.5	46.5	157	285	846	1,025	0.75

シリーズの誘発目地は、測定終了日である 60 日地点で、誘発目地以外のひび割れが確認され ず、最初に確認されたヘアクラックに沿ってひ び割れが発展しているため、ヘアクラックの発 生をひび割れ確認と位置づけた。

乾燥開始後 32 日目には、断面欠損率 72%の A シリーズ(1)、52%の B シリーズ(2)、C シリーズ (1,3)にも誘発目地ライン上に微細なひび割れ が発生した。

以降, ひび割れ発生状況確認を実施したが, 断面欠損率 62%のドーナツ型コンクリート試験 体全ての目地シリーズにひび割れが発生するま で乾燥開始後 51 日間,52%のAシリーズ(1),42% のBシリーズ(1),Dシリーズ(2,3)においては, 42 日間の時間を要する結果となった。また,断 面欠損率 32%については,試験終了とした 60 日 目に至ってもひび割れは確認されなかった。

図-7により,目地シリーズ別のひび割れ発 生状況として,Bシリーズが最もひび割れの入 り易いものであると読み取れる。また,本施工 において脱枠後に塗膜処理を実施するため,ひ び割れ発生の早期確認(脱枠後10日以内)をす る必要性があり,断面欠損率は62%を採用する ことが望ましいと考える。断面欠損率62%のB シリーズのひび割れ発生形状は,写真-1に見 られる通り,誘発目地ライン上にひび割れが発 生しており,そこでの応力集中を認めることが できた。

4. まとめ

本工事で使用する低熱ポルトランドセメント を用いたコンクリートを使用して,温度応力解 析,誘発目地試験を実施し,以下の結果を得た。

 本構造物の2リフトの各壁に2本ずつ2段 (上下間隔1m)水平にスパイラルシースを 施し,打込み半日後から7日間のパイプク ーリング(24.5℃)の実施と誘発目地を L=17.6m間隔で設けることにより,目標値 である温度ひび割れ指数1.2以上の確保が 可能であることを確認した。

写真-1 62% B シリーズひび割れ発生状況

2)誘発目地試験の結果として、コンクリートの断面欠損率を62%以上とすれば、乾燥開始後10日以内にはひび割れを確認することができた。目地の形状としては、断面の中心部に1枚配置するBシリーズが最もひび割れの発生し易いものであると確認した。

本論文の結論は,解析と試験を主体としたも のであり,本施工においてこの有効性を確認し ていく予定である。

参考文献

- 北野祐介ほか:低熱ポルトランドセメント を用いたマスコンクリートの施工,土木学 会第55回年次学術講演会,Vol. 300, pp. 600 -601, 2000.9
- 2)コンクリート標準示方書平成8年版施工編, 土木学会, pp. 182-183, 1996.3
- 3)田辺忠顕:パイプクーリングにおける管壁 面の熱伝達率の決定ならびに冷却効果の解 析,土木学会論文報告集,第343号,pp.171 -179,1984.3
- 4)森本博昭,児嶋保明,小柳治:ひび割れ誘発目地の構造に関する研究,コンクリート工学年次論文報告集,Vol. 20,No. 2, pp. 1069-1074,1998.6