論文 対角型配筋を用いた柱梁接合部の耐震実験

高田 知明*1・佐藤 学*2・近藤 龍哉*3・広沢 雅也*4

要旨:柱梁接合部の強度向上を目的として,梁端からかかる応力の圧縮域が広がるよう調整 した新しい配筋方法を考案した。新しい配筋方法では,梁端にプレートを配置し,梁主筋を 接合部内で対角線上に折り曲げ,ナットでプレートに固定した。また,接合部内で梁主筋は アンボンドとした。これにより,曲げモーメントにより引張力を受けた梁主筋は反対側の引 張力を受ける梁危険断面位置において圧縮力として作用し,強度を向上させることに有効で あると考えた。実験の結果,最大強度は接合部せん断信頼強度の1.38倍まで上昇した。 キーワード:対角型配筋,アンボンド,不連続配筋,梁端プレート,接合部せん断耐力

1. はじめに

柱梁接合部(以下,接合部と略記)にせん断 力が作用するとき,主応力は一つの対角線方向 に圧縮力が生じ,これと直交する方向に引張力 が生じる。接合部せん断破壊の発生はこの引張 応力度の影響によるものと思われる。 そこで,本研究では圧縮域を拡大することで接 合部パネル内の引張応力度を減少,もしくは圧縮 応力度に転換し,二軸応力状態での破壊臨界値を 上昇させる新しい配筋方法を考案した。加力実験 結果に基づき想定するメカニズムの妥当性につ いて検討した結果を報告する。

図 - 1 試験体配筋図

*1 工学院大学大学院 工学研究科建築学専攻 (正会員)
*2 小田急建設(株) 設計部 修(工) (正会員)
*3 工学院大学工学部建築学科 助教授 工修 (正会員)
*4 工学院大学工学部建築学科 教授 工博 (正会員)

2. 実験概要

2.1 試験体概要

図 - 1 に試験体配筋図を,表 - 1 に試験体諸 元を示す。

梁端部に梁断面と同寸法で,梁主筋を通すた めの 28mm 孔径の穴を空けた,梁主筋固定用の プレートを配置した。梁主筋にはネジ付き鉄筋 を用い,柱面位置で折り曲げ,上端筋と下端筋 を X 型に交差させ,反対側の梁端部のプレート にナットで固定した。接合部内の梁主筋には樹 脂パイプを巻き,接合部コアコンクリートとの 付着を解除した。四隅の梁主筋は通し配筋とし ている。なお,材料試験の結果を表 - 2,3に 示す。

2.2 加力計画

試験体の柱上下反曲点位置にピンジョイント を設置した(図-1柱上下矢印の位置)。両梁先 端にスイベルジョイント・ロードセル付きアク チュエーターを取り付け,正負繰り返し荷重を 加えた。なお,柱には一定軸圧 0=6.0MPa を与 えている。

加力は層間変形角 R を指標とした変位制御で, 層間変形角 R=1/200rad.~3/100rad.ステージでは 各 2 サイクル, R=4/100rad.ステージでは 1 サイ クル加力した。加力サイクル図を図 - 2 に示す。 図中の+は正加力,-は負加力を表す。

2.3 変位計測

(1) 層間変形角

梁先端の加力点と柱端スイベルのピン位置で 相対変位を測定した。また,梁先端の加力点で 荷重を測定した。各点の相対変位を換算し,層 間変形角とした。

(2) 接合部せん断変形角

接合部内に標点(A,B,C,D)を埋め込み, 水平および垂直方向面内の相対変位を測定した (図-3)。接合部のせん断変形角 R_jはベクト ル AB とベクトル CD の平均 ベクトルと, ベクトル AC とベクトル BD の平均 ab ベクトル の交角の変化量としてもとめた。また,接合部 せん断力 V_iは式(1)により求めた。

表 - 1 試験体諸元

玉井	階高H[mr	2000				
ガン1 入	スパンL [r	3600				
	b _c [mm]	500				
	D _c [mm]	400				
tì	有効せいd _t	[mm]	53.4			
亻土	引張鉄角	竻	4-D22			
	a _t [mm ²]	1548				
	帯筋	6-D10@80				
	b _b [mm]	300				
	D _b [mm]	500				
	有効せいd _b	446.6				
汈	引張鉄角	6-D22				
栄	a _t [mm ²]	2322				
	あばら角	6-D10@100				
	沙洪プレート	t [mm]	22			
	米温ノクト	孔径	28			
接合部	せん断補引	2-D10@100				

表 - 2 鉄筋材料特性

径 (鋼種)	用途	降伏強度 _y [MPa]	ヤング係数 E _s [MPa]
D10 (SD295A)	せん断補強筋	406.76	2.2×10^{5}
D22 (SD345)	柱主筋	382.70	1.9×10^{5}
DN22	梁主筋	376.61	2.2×10^{5}

表 - 3	コンクリー	ト材料特性
压炉没度	コモン中	应由

上脑强度	51張强度	密度
_B [MPa]	_t [MPa]	[g/mm ³]
20.53	1.61	2.18

なお,接合部せん断応力度 は接合部せん断 力を文献 1)の接合部有効断面積で除した値とし た。

$$V_{j} = \frac{Q_{b}(L - D_{c})}{j} - Q_{c}$$
(1)

(3) 歪度計測と応力度換算

図 - 1 に示す梁主筋歪ゲージ位置及び接合部 パネル上下端位置で鉄筋歪を計測した。鉄筋の 引張試験の結果を表 - 2 に示す。鉄筋は全て応 力歪関係を Bi-Linear 型にモデル化し,残留歪を 考慮しながら歪度を応力度に変換している。な お,これをもとに Bi-Linear 型履歴ループは,歪 増加時の傾き角と歪回復時の傾き角を同じとし て,降伏後の応力度は一定としてある。

3. 実験結果

3.1 荷重变形関係

層間変形角と荷重を梁せん断力から換算した 柱せん断力の関係を図 - 4 に示す。

+5 加力時(+2/100rad.) に正側の最大強度 323.6kNを示し,-5加力時(-2/100rad.)に負側の最 大強度 - 289.8kNを示した。最大強度以降,サイ クルが進むにつれて強度が低下しているが,こ れは梁がずれたことにより接合部に対するプレ ートの拘束効果が低下したためだと思われる。 3.2 ひび割れ状況

図 - 5 にひび割れ状況を示す。+3 加力時 (2/100rad.),接合部パネル,及び接合部パネル四 隅から柱にかけて,ほぼ垂直に近い形でひび割 れが発生した。最大強度時(2/100rad.),接合部パ ネル中心付近に発生したひび割れ幅は 0.08mm 程度であったのに対し,接合部パネルから柱に かけて発生したひび割れ幅は 4mm を示した。+7 サイクル時(+3/100rad.),接合部から柱にかけて 発生したひび割れが接合部中心付近まで進展し, 同サイクル負加力時(-3/100rad.),逆 U 字を画い た。その後,接合部パネル上部のひび割れが大 きく進展し,終局強度時(4/100rad.)には上柱から 下柱にかけた大きな X 型のひび割れを画いた。 ひび割れが垂直方向に伸びた要因として,梁か

らの応力が左右対称に近い圧縮力になったため, 柱の上下非対称の圧縮域分布が垂直方向にせん 断力として作用したことによると思われる。 3.3 鉄筋挙動

(1) 柱主筋付着応力度

図 - 1の柱断面に示す C - 1 ,C - 2 ,C - 8 , C - 10 の接合部パネル上端位置と下端位置の応 力の差をその区間の鉄筋表面積で除し,付着応 力度 buを算出した。荷重番号と付着応力度の関 係を図 - 6 に包絡線で示す。なお,正負加力と も引張方向を正としている。 最大耐力時, C - 8 の付着応力度は設計用付着 強度に達し C - 10 も7割程度の値を示したが, C - 1, C - 3 の付着応力度は低下した。最大強度 以降, C - 8 は更に進展しているが, C - 1, C - 3 には付着力は発生しておらず, C - 10 の付着応 力度も低下した。各主筋とも±3加力時までは付 着力が発生していることが分かるが,以降の付 着力は最大強度によらず変動していることから, 接合部のひび割れ増大に伴い付着力の安定性が 失われたものと思われる。よって,付着力の低 下は接合部破壊に大きく影響しないものと考え られる。

(2) 接合部変形

図 - 7 に対角型アンボンド配筋試験体の接合 部せん断変形角R_jと接合部せん断力応力度の 関係を示した。なお,接合部せん断力は梁の応 力中心間で生じるとしてQ_bより換算した。

1/200rad.ステージでは大きな変形は見られな かったが,1/100rad.ステージ以降,せん断変形が 正負共に進行している。これは,接合部パネル のひび割れの進展に伴い接合部の剛性が急速に 低下したためだと思われる。なお,接合部にひ び割れが多数発生した後は計測ポイントが接合 部変形に即した動きをしなくなったため R_jの計 算値に乱れが生じた。

(3) 梁主筋応力度

図 - 8 に正加力時,引張側となる梁危険断面 位置での梁主筋応力度。。と,加力サイクルの 関係を示す。

+5(最大強度)時,柱断面位置の梁主筋応力 度を見ると,梁Aの主筋のb-BA1,b-BA3,b -BA4,及び梁Bの主筋は全て降伏応力度に達 しており,b-BA2 も降伏応力度近くに達して いることから,最大強度を示した+5時に梁主筋 は降伏したと考えられる。よって,本試験体で は梁曲げ降伏が支配的になったものと思われる。

(4) 梁主筋の応力伝達状況

想定したメカニズムを満たすためには,梁主 筋に発生する引張応力度は梁端プレートの主筋 固定位置に伝達している必要がある。よって,

接合部せん断変形角 Rj[rad.] 図 - 7 接合部せん断変形関係 梁主筋応力度の伝達状況に着目し,梁 B の梁主 筋である BB - 7, BB - 8 について梁端部,及び

0

0.02

0.04

2箇所の接合部内折り曲げ位置の応力度を計測 し,各地点で発生する応力度を比較した。計測 位置を図 - 1に,応力分布状況を図 - 9に示す。

梁主筋は接合部内で折り曲げているため,引 張力は折り曲げ角度に沿った方向に働く。この 時,発生する引張応力が進入側の梁主筋折り曲 げ位置の梁端プレートにかかることが考えられ る。しかし両主筋とも応力度分布に大きな差が 見られないことから,梁主筋に発生する応力は 全て固定したプレートのみに伝達され,圧縮応 力として作用しているものと思われる。

3.4 評価式との比較

-8

-0.04

-0.02

表 - 4 に設計用接合部せん断強度と実験結果 の最大値を示す。Q_{CMAX}は実験結果の最大値を柱

せん断力に換算した値,_cQ_{ju}は接合部せん断強度 計算値を柱せん断力に換算した値,_cQ_{my}は梁曲 げ強度計算値を柱せん断力に換算した値である。

最大強度を比較すると,1.38倍と高い強度を示 した。

表 - 4 強度比較									
Qcmax	Qcmax/cQju	cQju	cQmy						
323.6	1.38	234.2	382.2						

4. 破壊メカニズム

通常配筋と対角型アンボンド配筋の想定する 応力メカニズムを図 - 10 に示す。なお,通常配 筋のモデルとして筆者らが昨年度行った実験資 料 02 - NR を用いた。

02 - NR の接合部は,主応力度として引張応力 度(,)と圧縮応力度(,)が生じ,図-10(a)の状 態になる。この時,梁からの二軸応力度のうち 引張応力度がコンクリートの強度を低下させて いると考える。

提案する配筋方法で想定される応力状態は, 接合部に梁からの曲げモーメントが発生すると き,引張を受ける主筋が反対側の梁の梁端プレ ートで固定されているため,圧縮力として作用 し,主応力度の一方である通常配筋における引 張応力度を低減,もしくは圧縮応力度に転換す ることが可能であると考える。この時,主筋に 樹脂パイプを巻き,アンボンドとすることで付 着による梁端プレートへ伝達される応力の低下 を防いでいる。よって対角型アンボンド配筋の 接合部の応力メカニズムは図 - 10(b)に示すよう な応力状態になると考える。これにより,接合

	03-XR						02-NR					
加力	А				В			02-NR				
	t	H _t	j	H _c	t	H _t	j	H _c	t	H _t	j	H _c
-5	1059	53	231	284	871	447	216	230	1616	240	159	87
-4	865	53	256	309	855	447	276	170	1382	245	161	83
-3	966	53	263	317	932	447	279	167	1343	266	196	70
-2	561	53	290	344	552	447	312	134	771	310	256	54
-1	599	53	294	347	590	447	318	129	699	323	282	41
1	679	447	306	140	573	53	300	354	699	177	286	463
2	612	447	277	170	581	53	301	354	771	190	254	445
3	988	447	276	171	1047	53	263	317	1343	234	202	436
4	772	447	252	195	954	53	261	314	1382	255	179	435
5	1028	447	247	200	1229	53	293	347	1616	250	177	427

表 - 5 応力中心比較

図 10 応力メカニズム(上:02-NR,下:03-XR)

部に対する梁からの応力が全面圧縮に近い形と なり,強度が向上すると想定した。図-10を元 に,最大強度までの梁端部の梁側と接合部側に 発生する応力度の集計結果について表-5に示 した。発生する引張応力度の総和をT_s,圧縮応 力度の総和をT_c,梁下端位置を基点として引張 側応力中心をH_t,圧縮側応力中心をH_c,応力中 心間距離jを梁端部の曲げモーメントMをT_sで 除した値として求めた。

通常配筋の圧縮応力中心に対し,対角型アン ボンド配筋の圧縮応力中心は接合部中央付近に かかっていることが分かる。なお、加力サイク ルが進むにつれて接合部の圧縮応力中心が接合 部中心に近づいているが,これは折り曲げた主 筋が効果を発揮するまでにある程度変形が進む 必要があるためだと思われる。以上より,接合 部に入力される応力は通常のせん断力に加えて 接合部中央部を中心に分布した大きな圧縮力を 受けることになり,主応力の一部である引張力 が低減,一部圧縮力に変換され,接合部強度の 向上に繋がったと思われる。

5. まとめ

- (1) 接合部内で主筋とコアコンクリートの 付着を解除していたにもかかわらず,接 合部せん断信頼強度の 1.38 倍の接合部 せん断強度を得る事が出来た。
- (2)対角型アンボンド試験体を用いた場合, 通常の配筋状態に比べ,梁から入力され る圧縮応力が全圧縮に近い応力分布を 示した。よって,二軸応力のうち引張力 が接合部強度を低下させる主因子のひ とつであり,圧縮域を拡大することが強 度向上に繋がると考えられる。

参考文献

- 1)鉄筋コンクリート構造物の靭性保証型耐震 設計指針・同解説,日本建築学会,1999
- 2)近藤龍哉,佐藤学,鈴木公平,広沢雅也: 新しい配筋方法による RC 造柱梁接合部の せん断強度に関する実験的研究,コンクリ ート工学,Vol.25, No.2, pp.469-474, 2003.6