論文 梁主筋を機械式定着した高強度コンクリート造外柱接合部の 変形性能

渡部 杏子^{*1}・清原 俊彦^{*2}・田才 晃^{*3}・長谷川 勇樹^{*4}

要旨:梁主筋を機械式定着した柱・梁接合部の設計方法の確立に資するために,高強度鉄筋, 高強度コンクリートによる鉄筋コンクリート造外部柱・梁接合部の構造実験を行い,梁の曲 げ性状,接合部のせん断性状,及び梁主筋の定着性能を調べた。試験体のパラメータは,コ ンクリート強度,定着長とした。コンクリート強度が相対的に低い試験体,定着長の短い試 験体は,定着破壊を起こしたが,高強度コンクリート試験体,定着長の長い試験体では,定 着破壊は起こらず,大きな変形時に接合部の破壊は進んだが,梁主筋曲げ降伏が先行した。 梁曲げ耐力は,既往の略算式で評価可能であった。

キーワード:柱・梁接合部,機械式定着,高強度材料,曲げ降伏,定着破壊

1. はじめに

近年,鉄筋コンクリート造建築物の高層化に 伴い,使用される鉄筋が高強度化,太径化,高 密度化してきており,柱梁接合部における主筋 の定着法として,従来の90°折り曲げ定着に代 わり,機械式定着が普及しつつある。

これは,この定着法の定着破壊に関する実験 研究の蓄積に基づく設計基準の整備によるとこ ろが大きいが,さらに高い強度の範囲で機械式 定着を使用可能とすることが建築構造物の設計 の自由度を高めると考えられる。

そこで本研究では,梁主筋にUSD685,コンク リート設計基準強度 80~120N/mm²の高強度材 料を用いて梁主筋を機械式定着した外柱・梁接 合部の地震時の構造性能を把握することを目的 として静的加力実験を行った。

2. 試験体

2.1 試験体概要

試験体図を図 - 1 に,試験体パラメータを表 - 1 に示す。試験体は,超高層 RC 造建築物の下 層部の外部柱・梁接合部を想定した約 1/2 縮尺模 型試験体全 5 体とした。

表 - 1 試験体パラメータ

試験体名		Fc(N/mm ²) ¹	定着長ld(mm)	梁主筋(USD685)	せん断余裕度 ³	
No.1	(基準)	80	365 (= 2/3Dc ²)	4-D29	1.37	
No.2	(Fc·高)	120	365 (= 2/3Dc)	6-D29(2段)	1.23	
No.3	(Fc-低)	45	365 (= 2/3Dc)	3-D29	1.07	
No.4	(ld·長)	80	460 (= 0.84Dc)	4-D29	1.73	
No.5	(ld·短)	80	275 (= 1/2Dc)	4-D29	1.04	

1 Fc: コンクリート設計基準強度 2 Dc: 柱せい

3 せん断余裕度 = 接合部せん断破壊時耐力²⁾/梁曲げ終局時耐力¹⁾ (表2、3に基づく)

*1 横浜国立大学大学院工学府社会空間システム学専攻 (正会員)

*2 (株)堀江建築工学研究所 (正会員)

*3 横浜国立大学大学院工学研究院 システムの創生部門 工(博) (正会員)

*4 横浜国立大学大学院工学府社会空間システム学専攻

梁主筋は,ネジ節鉄筋を用い,定着金物には 図-2に示すようなつば付ナット状の金物を用 いた。定着長は,図-3に示すように柱フェイ スから定着要素の外径が最大となる位置までの 距離と定義した。

試験体寸法は全試験体共通で,柱断面 b× D=550×550(mm),梁断面 b×D=450×600(mm), 柱反曲点距離 3000(mm),梁 1/2 スパン (加力点 から柱芯までの距離)を2400(mm)とした。No.1 試験体を基準試験体とし,梁主筋 4 - D29 (USD685), 柱主筋 16 - D25 (USD685), 定着 長 365mm (2/3Dc), コンクリート強度 Fc=80N/mm²とし, 接合部のせん断破壊よりも梁 の曲げ降伏が先行するように計画した。各試験 体のパラメータは,コンクリート強度,梁主筋 定着長である。No.2 試験体はコンクリート設計 基準強度を Fc=120N/mm², No.3 試験体は Fc=45N/mm²とし, せん断余裕度(梁曲げ降伏に 対する接合部せん断破壊耐力の比)が No.1 試験 体と近似するように梁主筋本数を調整した。 No.4, No.5 試験体は定着長を変動させたもので, No.4 試験体は定着長を 460mm (0.84Dc), No.5 試験体は定着長を 275mm (1/2Dc)とした。接合 部横補強筋は全試験体共通で,外周筋 D13 (SD785)3 組とした。尚,本実験では柱軸力は与 えていない。材料特性を表 - 2 に示す。

≐+° ≣-¢ /★	設計基準強度		4	週強度 実験		験時強度	ヤング係数
司马劳 14	(N/mm ²)		()	N/mm ²)	(N/mm^2)		(N/mm ²)
No.1,4,5	80			85.4	95.3		35220
No.2	12	20	129.4		148.4		43902
No.3	4	5		43.2		44.4	26765
ረተ ሰድ ቶ	種 降伏強 (N/mm		度	夏 引張強度) (N/mm ²)		降伏歪	ヤング係数
亚大月刀个			1 ²)			(%)	(N/mm^2)
D10 (SD785相当)		842		1018		0.45	199390
D13 (SD785相当)		855		1042		0.46	206899
D25 (USD685)		711		904		0.46	182393
D29 (USD685)		707	921			0.40	198824

表 - 2 材料特性

2.2 加力方法及び測定方法

加力方法を図 - 4 に示す。柱の反曲点を想定 している位置で試験体を単純支持(一端ピン支 持,他端ローラー支持)し,梁反曲点位置に 1000kN ジャッキにより載荷した。加力履歴は, 正負交番繰り返し漸増載荷とし,層間変形角 1/800rad.1回,1/400,1/200,1/100,1/50,1/25rad. まで各2回ずつ計11サイクル行った。

測定項目は,梁端荷重,層間変位(接合部の せん断変形成分,梁変形成分,柱変形成分を独 立に計測しその合計とした),定着板移動量,主 筋及びせん断補強筋のひずみとした。梁主筋の 歪ゲージは,主筋に沿って横節のない部分に幅 4mm,深さ3mmの溝を切削して,溝底面に貼付 し,コンクリートに対する主筋の付着に影響が 出ないようにした。接合部のせん断変形による 成分 _pは式(1)により求めた。

p=(1-a/2L-b/h) ・h (1) ここで L は梁反曲点位置より接合部中心までの 距離,h は柱反曲点距離,a は接合部の幅,b は 接合部のせい, は接合部のせん断変形角であ る。各変形成分は接合部内に埋め込まれた4本 の M24 のボルトで計測フレームを支持し,計測 した。

3. 実験結果

3.1 破壊性状

各試験体の最終破壊状況と層せん断力(Q) - 層 間変形()関係を図 - 5 に,各部変形割合の推移 を図 - 6 に示す。

(1)基準試験体(No.1)の破壊性状

層間変形角 R = 1/800rad.時に梁の柱フェイ ス近傍に曲げひび割れが発生し,R=1/200rad. 時に,柱梁接合部に,梁主筋定着端から柱・ 梁の入隅部を結ぶように斜めひび割れが発生 した。ひび割れ幅の拡大が顕著となるのは R = 1/50rad.付近で梁主筋が降伏した後であっ た。層せん断力(Q) - 層間変形()関係は R= 1/50rad.の1回目のサイクルまではほぼ紡錘形 の安定したループを描いたが, R = 1/50rad.の 2回目のサイクルでスリップ型の性状となり, R = 1/25rad.の繰り返しでは 2 回目のサイクル での最大荷重が1回目の70%程度までしか上 昇せず また 図 - 6 に示すように R = 1/25rad. で接合部の変形成分割合が急増していること から R = 1/25rad.で接合部のせん断破壊に至っ たものと考えられる。

(2)コンクリート強度よる破壊性状の差異 コンクリート強度の高い No.2, 低い No.3 共に, No.1 試験体とほぼ同様の経過を辿った が,コンクリート強度が高いほうが梁降伏時 変形が大きい。No.2 試験体は No.1 と同様に R = ± 1/25rad.の2回目のサイクルでの最大荷重 が1回目のサイクルよりも大幅に小さく,ま た,接合部の変形成分割合も急増しているこ とから R = 1/25rad.にて接合部せん断破壊に至 ったものと思われる。No.3 試験体はR = -1/25rad.に向かう1回目のサイクルの途中で接 合部側面のコンクリートが剥離し耐力低下を 生じた。No.3 試験体は R = 1/25rad.においても 接合部変形成分割合が急増していないこと, 後述する梁主筋定着板の移動量などから考え て,側方割裂破壊を生じたものと考えられる。

(3)定着長による破壊性状の差異
 定着長の長い No.4 は,接合部の斜めひび割れの発生時期は No.1 よりも遅く,R=1/100rad.
 時に発生した。梁主筋の降伏は No.1 と同様に
 R = 1/50rad.付近でみられた。最終サイクル(R=1/25rad.)でもひび割れ幅の拡大は明らか

-483-

に他の試験体よりも小さく,Q- 関係も R= ± 1/25rad.の2回目のサイクルでも安定した紡錘形を描いており,載荷終了まで接合部せん断破壊は認められなかった。一方,定着長の短い No.5は,接合部斜めひび割れの発生が No.1よりも早く,R=1/400rad.で発生した。R=1/50rad.に向かうサイクルで梁主筋が降伏したが,R=-1/25rad.に向かう1回目のサイクルの途中で柱前面のコンクリートが大きく剥離し,掻き出し破壊が生じた。

尚,全試験体ともR=1/100rad.を経験した後の 除荷時における残留ひび割れ幅は最大でも 0.2mm 程度であった。

3.2 主筋定着板移動量

定着板移動量測定用変位計による計測値は, 接合部変形の増大とともに全試験体で増加した。 しかし,この値は,背面側のコンクリートに埋 め込まれたボルトに支持された変位計による計 測値であるため,接合部斜めひび割れの梁主筋 方向成分が含まれてしまう(図-7)。そこで図 動量計測値から接合部ひび割れ幅の梁主筋方向 成分 S を差し引いたものを実際の定着板移動量 であると仮定し,これを図 - 9に示す。全試験 体共 R=1/50rad.までは定着板の移動はほとんど ない。

定着長の短いNo.5 試験体はR = 1/25rad.で隅筋, 中筋共に急激に定着板移動量が増大しており, 掻き出し破壊が生じたことを裏付けている。ま た,コンクリート強度が低いNo.3 試験体につい ては,R = 1/25rad.で隅筋のみ定着板移動量が増 大しており,側方割裂破壊が生じたものと考え られる。No.1 基準試験体もR = 1/25rad.で多少の 定着板移動量が認められ,定着破壊が生じつつ あったものと考えられる。コンクリート強度の 高いNo.2 試験体及び定着長の長いNo.4 試験体 はR = 1/25rad.でも定着板移動量は殆ど認められ ない。この結果からはFc = 100N/mm²級の高強度 コンクリートを用いる場合でも,コンクリート 強度が高い方が,また,定着長が長い方が,機 械式定着性状は良好となることがわかる。

3.3 支圧力と付着力の負担割合

梁主筋に作用する引張力に対する支圧力と付 着力の割合の推移を図 - 10 に示す。

支圧力は定着板近傍のひずみゲージにより, 付着力は危険断面と定着板近傍のひずみゲージ の値に基づいて算出した。ひずみゲージは各試 験体とも梁の側主筋と中主筋の双方で計測した が,顕著な差異は認められなかったため,側筋 のデータを示した。また,2段配筋となっている No.2 試験体については 1 段筋と 2 段筋の双方を 示した。

全試験体とも層間変形が増加すると支圧力の 負担割合が大きくなる。コンクリート強度によ る差異は本実験結果では顕著ではなかった。定 着長の異なる No.1,4,5の結果を比較すると, 変形が小さいレベルから定着長が短いほど,支 圧力の負担割合が大きい。No.2試験体の2段筋 を参照すると R = 1/200rad.で支圧力の負担割合

	層せん断力計算値(kN)					実験結果			
	梁曲げ	接合部せん	定着耐力時			最大	最大荷重時		
	終局時 ¹⁾	断破壊時 ²⁾	提案式 ³⁾	NewRC ⁴⁾	掻き出し破壊 ⁵⁾	層せん断力	層間変形角	破壊形式	
	$_{\rm b} {\rm Q}_{\rm bm}$	${}_{\rm b}{\rm Q}_{\rm ps}$	$_{\rm b} Q_{\rm ba1}$	$_{\rm b} {\rm Q}_{\rm ba2}$	$_{\rm b}{ m Q}_{{ m ba}3}$	Q	R		
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(rad)		
No.1 基準	332	455	437	424	388	370	0.040	梁曲げ降伏 接合部せん断破壊	
No.2 Fc高	471	581	779	572	452	442	0.031	梁曲げ降伏 接合部せん断破壊	
No.3 Fc低	249	267	223	259	315	258	0.020	梁曲げ降伏 側方割裂破壊	
No.4 ld長	332	574	502	424	542	396	0.040	梁曲げ降伏	
No.5 ld短	332	346	371	424	286	334	0.020	梁曲げ降伏 掻き出し破壊	

表-3 耐力計算値と実験値

1) $M_u=0.9\sigma_y a_t d$ 2) $V_{ju}=k$ $F_j b_j D_j$

が急増している。これは,R=1/200rad.で1段筋 定着端を通過する接合部斜めひび割れが生じ, このひび割れの影響により2段筋の付着が失わ れたことによると考えられる。

3.4 耐力計算値と実験値の比較

梁曲げ終局時,接合部せん断破壊時,梁主筋 定着耐力時の計算値と実験で得られた最大耐力 とを比較し表-3に示す。

全試験体とも梁主筋が降伏したが,梁の曲げ 降伏強度は既往の略算式で評価できる。

No.3 試験体は,提案式³⁾による側方割裂耐力 計算値が計算耐力の内最も小さいものであった が,実験結果は梁曲げ降伏後の側方割裂破壊と なり,最大耐力は提案式による計算値を 15%程 度上回っている。梁曲げ降伏後の掻き出し破壊 を生じた No.5 試験体は,算定耐力の最小値は掻 き出し破壊耐力計算値であったが,最大耐力実 験値は計算値を 30%以上,上回った。梁曲げ降 伏後の接合部せん断破壊を生じた No.1 及び No.2 試験体の最大耐力実験値は接合部せん断破壊耐 力計算値よりも明らかに低かった。

4. まとめ

梁主筋を機械式定着し,高強度材料を用いた 梁曲げ降伏先行型 RC 造ト形柱梁接合部の静的 載荷実験を行い,以下の知見を得た。

(1)全ての試験体は計画通り梁曲げ降伏が他の破 壊形式よりも先行した。Fc = 100N/mm²程度の高 強度コンクリートと梁主筋 USD685 の組み合わ せを用いても,既往の算定式を用いて梁降伏を 保証する設計が可能であると判断できる。ただ し,梁主筋が降伏したのは R = 1/50rad.前後であ り,接合部せん断ひび割れ発生以後であった。

(2)Fc = 100N/mm² 程度の高強度コンクリートを 用いた場合でも,コンクリート強度が高いほど, また,定着長が長いほど,機械式定着性状は良 好となる。

(3) No.1, No.2 試験体の実験結果を参照すると, 梁曲げ降伏以後の大変形時に接合部がせん断破 壊する場合は,接合部破壊時の耐力は既往の設 計式による計算値よりも小さい値となる。

謝辞:本研究は,(財)日本建築防災協会に設置 された機械式定着工法研究会(岡田恒男委員長) の研究プロジェクトの一環として行った。多く の関係者各位に謝意を示す。

参考文献

- 日本建築学会:鉄筋コンクリート構造計算規準・同解説 pp.145 1999
- 2)日本建築学会:鉄筋コンクリート造建物の靭 性保証指針・同解説 pp.245 1999
- 3)加藤慎二,清原俊彦,田才晃:RC 造柱梁接 合部内に機械式定着した梁主筋の定着耐力 の評価に関する研究,コンクリート工学年次 論文集 第24号 2002
- 村上雅英,窪田敏行:高強度電炉鉄筋の開発 に関する研究 RC 外部梁柱接合部の梁主筋 の機械式定着強度実験式の提案,日本建築学 会大会学術講演梗概集 pp.127 1993
- 5)日本建築学会:鉄筋コンクリート造建物の靭 性保証指針・同解説 pp.265 1999