論文 PC 外柱梁接合部の力学性状に及ぼす鋼材定着位置の影響

YUE Wei^{*1}・西山 峰広^{*2}

要旨:梁が PC 造または RC 造,柱が RC 造のト型柱梁接合部試験体 7 体の正負繰り返し載荷 実験を行い,PC 鋼材定着位置,梁曲げ耐力に対する PC 鋼材寄与率及びコンクリート圧縮強 度が PC 外柱梁接合部強度,破壊性状などに及ぼす影響を実験的に把握した。接合部せん断 ひび割れ発生荷重は,定着部が接合部内に入るほど小さくなった。また,PC 鋼材が接合部内 に定着されている場合には,PC 鋼材張力が小さくなり,耐力低下につながった。 キーワード:プレストレス,柱梁接合部,定着,せん断,プレストレストコンクリート

1. はじめに

外柱梁接合部において, PC鋼材が接合部内に 定着されている場合には,接合部外に定着され ている場合に比べて,最大耐力が低下し,接合 部せん断変形が大きくなるなどの結果が実験で 示された^{1,2)}。しかしながら,これらの研究にお いては,接合部の破壊及び耐力低下を起こすの は接合部せん断破壊であるのか, PC鋼材の定着 劣化であるのかについては議論されていない。

本研究では,PC 鋼材定着位置が外柱梁接合部 の破壊性状,せん断耐力などに与える影響を実 験的に考察した結果について報告する。

2. 実験概要

2.1 試験体

試験体は、柱をRC造としたト型外柱梁接合部 骨組7体であり、PC梁のものが6体、RC梁のも のが1体となっている。試験体はいずれも200 ×300mmの矩形断面梁と250×250mmの正方形断 面柱よりなる一体打ち骨組である。代表的な試 験体を図-1に示す。試験体一覧を表-1に示 す。実験パラメータは、①梁曲げ耐力に対する PC鋼材定着板の接合部内での位置(接合部外 側柱面定着、柱梁接合面から測って0.75 D_c と 0.5 D_c の位置に定着、 D_c は柱せい)、③PC造梁と RC造梁, ④コンクリート強度(設計強度f'c=30 及び 50N/mm²) である。

図-1 試験体図

*1 京都大学 工学研究科建築学専攻 工修 (正会員)*2 京都大学 工学研究科都市環境工学専攻 助教授 博士(工学) (正会員)

試験体名	PC鋼材定着位置	λ*	設計強度 (N/mm ²)
KPC1-1	接合部外側	0.49	30
KPC1-2	接合部内 $(0.5D_c)$	0.49	30
KPC2-1	接合部外側	0.73	30
KPC2-2	接合部内(0.75 <i>D</i> _c)	0.73	30
KPC2-3	接合部内 $(0.5D_c)$	0.73	30
KPC3	接合部内 $(0.5D_c)$	0.76	50
KRC	_	-	30

表-1 試験体一覧

* λは材料強度に基づく曲げ解析より得られた値

試験体名	圧縮強度 <i>f'_c</i> (N/mm ²)	割裂引張 強度 (N/mm ²)	1/3ƒ′ _。 割線 弾性係数 (10 ⁴ N/mm ²)			
KPC1-1 KPC1-2	45.5	3.27	3.30			
KPC2-1 KPC2-2 KPC2-3	34.6	2.51	2.82			
KRC	45.5	3.27	3.30			
KPC3 64.3		- 3.43				
表-5	表-5 グラウトモルタルの力学特性(実験時)					
試験体名	圧縮強度 <i>f</i> ′ _。 (N/mm ²)	割裂引張 強度 (N/mm ²)	1/3ƒ′ _。 割線 弾性係数 (10 ⁴ N/mm ²)			
KPC1-1 KPC1-2	53.6	2.06	1.42			
KPC2-1 KPC2-2 KPC2-3 KPC3	54.0	1.86	1.39			

表-3 コンクリートの力学特性(実験時)

すべての試験体の梁は、ほぼ同じ大きさの曲 げ強度となるように設計されている。梁の主筋 量が多いため、早期にコンクリートが曲げ圧壊 しないように、梁塑性ヒンジ想定部の横拘束補 強筋を増やしている。表-2に示されるように 実験時のプレストレス力は、鋼材の規格降伏耐 力の概ね 60%に相当する。本実験で使用した材 料の力学特性を表-3~5にまとめて示す。

2.2 載荷方法,載荷履歴及び測定項目

載荷装置を図-2 に示す。試験体を 90 度回転 させて、一端をピン、他端をローラーとし、梁 端に正負繰り返し水平荷重を加えた。載荷履歴 は、梁部材回転角により制御し、±0.5%、±1%、 ±2%、±3%、±4%、±5%、±7.5%の各変位 で 2 回ずつ繰り返し載荷を行った。

表 -2 有効プレストレスカ P_e (実験時)

試験体名	P_{e} (kN)	P_{e}/bDf'_{c}
KPC1-1	323.6(0.61 <i>f</i> _{py})	0.12
KPC1-2	314.4(0.59f _{py})	0.12
KPC2-1	$555.6(0.59f_{py})$	0.27
KPC2-2	556.2(0.59 <i>f</i> _{py})	0.27
KPC2-3	538.2(0.57 <i>f</i> _{py})	0.26
KPC3	$599.4(0.64f_{py})$	0.16

 f_{py} : PC鋼材降伏強度,b:梁幅,D: 梁全せい

表-4 鋼材の力学特性

鋼材種		降伏強度	ヤング係数	引張強度
		(N/mm ²)	$(10^{5} N/mm^{2})$	(N/mm²)
異形	D19	1064	2.01	1176
PC鋼棒	D25	5 1026 2.01		1146
	D10	307	1.76	437
普通強 度鉄筋	D16	375	1.85	533
	D19	387	1.83	570
	D25	417	1.88	614

測定項目は,梁端荷重,梁端変位,接合部・ 梁塑性ヒンジ想定部・柱塑性ヒンジ想定部の変 形,PC 鋼材ひずみ,軸方向鉄筋ひずみ,せん断 補強筋ひずみなどとなっている。

3. 実験結果及び考察

3.1 接合部せん断ひび割れ強度

接合部せん断ひび割れを最初に目視した時の 梁端荷重を V_{cr} として表-6に示す。また,接合 部内の主引張応力度がコンクリートの引張強度 を超えるとせん断ひび割れが生じるとする,主 応力度式(1)により算定した接合部せん断ひび 割れ強度 V_{ic} を,式(2)を用いて梁端荷重に換算

試験体名	実験値 <i>V _{cr}</i> (kN)	計算值 V _{cr.cal} (kN)	V _{cr} /V _{cr.cal}
KPC1-1	56.4	70.9(61.8)	0.80(0.91)
KPC1-2	42.2	70.5(60.1)	0.60(0.70)
KPC2-1	52.2	71.9(56.8)	0.73(0.91)
KPC2-2	45.3	71.9(55.6)	0.63(0.92)
KPC2-3	32.3	71.3(51.7)	0.45(0.62)
KPC3	36.8	92.4(73.8)	0.40(0.50)
KRC	36.7	56.6(56.6)	0.65(0.65)

表-6 接合部せん断ひび割れ時梁端荷重

$$V_{jc} = b_j D_c \sqrt{\sigma_t^2 + \frac{P_e}{bD} \sigma_t}$$
 (1)

$$V_{cr.cal} = V_{jc} \frac{2j_b}{L - D_c - \frac{L}{H}j_b}$$
(2)

試験体名	接合部せん断補強筋 平均圧縮ひずみ (10 ⁻⁶)	接合部内コンクリート 平均圧縮応力 [*] <i>σ _{cj}</i> (N/mm ²)	梁断面平均 プレストレス応力 σ_{cb} (N/mm 2)	$\sigma_{\it cj}/\sigma_{\it c}$
KPC1-1	64	2.11	6.21	0.34
KPC1-2	44	1.45	6.41	0.23
KPC2-1	116	3.27	11.4	0.29
KPC2-2	94	2.65	11.2	0.24
KPC2-3	35	0.99	10.8	0.09
KPC3	77	2.64	11.5	0.23

表-7 プレストレス導入時接合部せん断補強筋ひずみ

* コンクリートの弾性係数には、実験時の値を使用した。

した値を V_{crcal} として,同じく,**表**-6に示す。 ここで, b_j :接合部有効幅(= $(b+b_c)/2$, b_c は,柱 幅), j_b :梁の応力中心間距離(=7/8d,dは,普通 強度鉄筋の有効せい),H:柱支点間距離, D_c : 柱せい,L:梁スパン(梁載荷点から接合部中心 までの距離×2), σ_c : コンクリート引張強度

 $(\sigma_{t} = 0.626 \sqrt{f_{c}}': 日本建築学会「高強度コンク$ リートの技術の現状」より), <math>D: 梁全せい, b:

梁幅である。表-6の接合部ひび割れ時の梁端 荷重は、PC鋼材定着部が接合部内に入るほど小 さくなる傾向がある。

式(1)においてプレストレス力P_eによる接合 部への梁材軸方向圧縮応力は, P_e/bDとして計算 している。これは,梁断面平均プレストレスで あり,接合部内ではさらに応力が広がるため, 実際に接合部に生じている梁材軸方向圧縮応力 は式(1)で与えられる値よりも小さくなるはず である。プレストレス導入時に接合部せん断補 強筋ひずみ(接合部中央付近に配置した 2 組) を測定した結果から,接合部に生じている梁材 軸方向コンクリート圧縮応力を算定した結果を 表-7に示す。ひずみゲージは柱側面中央付近 に貼付されている。ここでは,せん断補強筋ひ ずみが接合部内コンクリートの平均ひずみを表 していると仮定した。定着部が接合部内に設置 されている試験体ほど,せん断補強筋ひずみが 小さくなる傾向があり,有効なプレストレスが 接合部に導入されていないことが分かる。接合 部内の梁材軸方向コンクリート圧縮応力は梁断 面平均プレストレス応力と比べて,34~9%程度 にまで小さくなっている。それぞれの試験体に 対して,表-7の右端の比率をプレストレス力 に乗じて計算した結果を表-6の()内に示す。 これにより,実験値により近い計算値となる。

3.2 梁端荷重-変位関係および最大耐力

図-3に各試験体の梁端荷重-梁端変位関係 を示す。履歴ループ形状は、いずれの試験体も エネルギー消費能力に乏しいスリップ型であり、 PC 鋼材定着位置及びプレストレス力の有無(PC, RC)による違いはほとんど見られない。

図-3に示されているように、すべての試験 体で梁端最大荷重に達するまでに梁普通強度鉄 筋が降伏した。定着部が接合部外側に設置され た KPC1-1 では、梁端最大荷重に達する前に PC 鋼材が降伏ひずみに達した。これは PC 鋼材の径 が小さいことと、その定着がよいためと考えら れる。高強度コンクリート試験体 KPC3 では梁端 最大荷重に達した後に PC 鋼材が降伏ひずみに達 した。他の試験体では PC 鋼材は降伏していない。

表-8に梁端最大荷重実験値と, ACIのコンク リート応力ブロックと鋼材の実強度を用いて算 定した梁曲げ強度時の梁端荷重計算値Pcalを示 す。梁端最大荷重がPcalに達した試験体は、定着 部が接合部外側に設置されたKPC1-1のみである。 これは定着板が接合部外側に設置されており, 接合部コンクリートが有効に拘束され,図-4 に示すようにPC鋼材の張力がPC鋼材降伏まで発 揮されたためと考えられる。梁断面曲げ強度に 対するPC鋼材寄与率が同じ試験体において、梁 端最大荷重(正負平均値)は、定着部が接合部外 に配置されたKPC1-1, KPC2-1 のほうが, 定着部 が接合部内に設置されたKPC1-2, KPC2-3 より, それぞれ 9%と 13%大きい。定着部位置が接合 部外から接合部内に移行するにつれて、梁端最 大荷重が低下している。

3.3 接合部せん断変形成分

表-8 梁端最大荷重実験値と計算値の比較

試験体名	載荷 方向	実験値 V _{b max} (kN)	計算値 P _{cal} (kN)	$V_{b max}/P_{cal}$
	正	121.5	114.0	1.06
	負	112.5	114.9	0.98
KDC1_2	正	111.6	114.0	0.97
NFUT Z	負	102.2	114.5	0.89
	正	107.3	109.2	0.99
KP02-1	負	100.7	106.2	0.93
	н	104.1	109.2	0.96
	負	97.8	106.2	0.90
KDC3-3	Ш	95.4	108.6	0.88
NFUZ J	負	88.1	108.0	0.81
KDC2	正	115.3	100.0	0.94
NF03	負	106	122.3	0.87
KDC	正	118.1	120.1	0.92
NIC	負	104.5	129.1	0.81

図-5に示した接合部及びその周辺での各種 変形成分の梁端変位への寄与率から、いずれの 試験体も梁部材回転角の上昇に伴い、柱梁接合 部のせん断変形成分が増加していることが分か る。載荷終了時での柱梁接合部せん断変形の梁 端変位への寄与率(正負方向の平均値)を各試験

図-3 梁端荷重-変位関係

体で比較すると、定着部が接合部内に設置され た KPC1-2 は、定着部が接合部外に設置された試 験体 KPC1-1 より 28%大きい。また、KPC2-3 は、 KPC2-2、KPC2-1 より、それぞれ 17%、41%せん 断変形成分が大きい。これらにより、定着部を 柱梁接合部外側に設置することによって、接合 部のせん断変形成分が抑えられることが分かる。

3.4 破壊形式

試験体はすべて,載荷が進むにつれ,柱梁接 合部にせん断ひび割れが多数発生,進展し,接 合部コンクリートに圧壊が生じた。定着部が接 合部内にあることにより,接合部の破壊が接合 部せん断破壊とPC鋼材定着劣化の2種類となり 得る。そこで,試験体の破壊形式を判定する際 に,以下の6項目を判断基準とした。

① 普通強度鉄筋が降伏ひずみに達した変位

② PC 鋼材が降伏ひずみに達した変位

③ 破壊状況の外観

Contribution to beam end displacement [%]

- *P_{pc}*:載荷時 PC 鋼材張力
- *P_{pe}*:載荷直前 PC 鋼材張力
- *D_i*: 柱梁接合部せん断変形
- D_b:梁塑性ヒンジ想定部での曲げ 変形(柱梁接合面から梁側へ 300mm+接合部内へ 55mm の 領域)
- D_c:柱塑性ヒンジ想定部の曲げ変 形(接合部両側 150mm の領 域)
- D_{b1}:梁塑性ヒンジ想定部以外の
 弾性計算による曲げ変形

図-5 正載荷時梁端変位に対する各変形成分の寄与率

④ 鋼材の張力より算定した接合部せん断入力 と梁端荷重の比較

⑤ 接合部せん断ひずみの推移

⑥ 接合部せん断変形の割合

1) KPC3 と KRC: 図-6から接合部せん断入力が 載荷につれて,増加する或いはほぼ一定の値と なる。図-3に示したこの二体の試験体の梁端 荷重を見ると,梁部材回転角3%時に最大値とな り,その後低下した。また,この二体の試験体 では普通強度鉄筋とPC鋼材がともに降伏したこ とより,KPC3 と KRC は梁曲げ降伏により耐力低 下したが,最終的に接合部せん断破壊が生じた と考えられる。

 2) KPC1-1: 図-3から PC 鋼材降伏後,梁部材 回転角が2.7%時に最大耐力に達し,梁曲げ降伏 が生じたと考えられる。しかし,接合部せん断 ひずみが載荷につれて増加していること(図-7)と,接合部破壊状況および載荷につれて接 合部せん断変形成分が増加すること(図-5) から KPC1-1 は最終的に接合部せん断破壊したと 判定される。

3) KPC2-1 と KPC2-2: 普通強度鉄筋は降伏した が, PC 鋼材は降伏せずに, 載荷につれて, PC 鋼 材張力が増加していく (図-4)。接合部せん断 入力は梁部材回転角 2%時に最大となり, その後 低下する (図-6)。また, 接合部のせん断ひず みは図-7のように載荷につれて増加する。従 って, KPC2-1 と KPC2-2 の耐力の低下は接合部せ ん断破壊によるものであることが分かる。

4) KPC1-2 と KPC2-3: 図-7 で示されるように 接合部せん断ひずみが最も大きくなるが、図4のように PC 鋼材張力が最も小さく, PC 鋼材張 力が発揮されていないことがわかる。これによ り PC 鋼材の定着劣化が生じたと考えられる。

4. まとめ

 1)定着部が接合部内に設置されている試験体ほど,接合部に有効なプレストレスが導入されず, 接合部せん断ひび割れ荷重は小さくなった。
 2)定着部位置が接合部外から接合部コア中央に

移行するにつれて,最大耐力が9~13%低下した。 3)定着部を柱梁接合部外側に設置することによって,接合部のせん断変形が抑えられた。 4)柱梁接合部の破壊と最大耐力の低下に対しては,接合部のせん断破壊だけではなく,PC 鋼材 定着劣化もその要因となる。

謝辞

本研究は,(社)プレストレストコンクリート 技術協会内に設けられた「PC 造柱梁接合部研究 委員会(委員長,京都大学大学院渡邉史夫教授)」 における研究の一環として行われたものである。

参考文献

- 西山ほか: PC 鋼材定着位置の梁柱接合部強 度に及ぼす影響,日本建築学会大会学術講演 梗概集, C-2,構造IV, pp.927-930, 2001.9
- 2) 浜原ほか:プレストレスコンクリート外側柱
 梁接合部の終局強度に関する実験的研究,日本建築学会大会学術講演梗概集, C-2, 構造 IV, pp. 1009-1014, 2003.9