論文 U型スラブの耐力・変形に関する実験的研究

岩原 昭次*

要旨:本研究は,建築物の高機能化・高品質化・長寿命化・可変化に対応できるスラブとして,U型断面形状を有するプレキャストスラブを提案し,そのスラブの耐力・変形性状を明らかにすることを目的とする.試験体は全部で4体であり,うち,2体は躯体部分の中央部がU型断面形状で,両端が口型断面である試験体およびそのU型断面上に平面パネルを敷き並べたものであり,他の2体はスラブ端部の曲げ性状を確認するための試験体である. 提案したプレキャストスラブは耐力・剛性ともに良好であることが示された. キーワード:プレキャストスラブ,平面パネル,端部,曲げ性状

1. はじめに

建築物における床の設計には,高機能化・高 品質化・高耐久化という付加価値的な要求の他 に,施工工事の合理化・工期短縮なども求めら れる場合がある.更に,建築物の長寿命化のた めにスケルトン部分とインフィル部分とに分け て造作する場合には床部分の用途替えにも対応 できる可変的な構造にすることも必要となる.

このような建築物の高機能化・高品質化・長 寿命化・可変化に対応できるスラブの1つとし て,中央がU型断面形状で,両端が口型断面で ある一方向プレキャストスラブを敷き並べて床 を構成する構法が考えられる.これによって, 床は利用方法に応じて高低差を自由に変えられ るとともに,床下のスペース部分は配管・配線 類の配置・交換が自在にできる場になり,また 収納スペースとしても利用できる.

本研究は、このような中央がU型断面形状で, 両端が口型断面である一方向プレキャストスラ ブの中央部の,また同スラブと梁接合部の耐 力・変形性状を明らかにすることを目的とする.

2. 実験概要

2.1 試験体の種類

試験体は実寸法の2/3縮尺モデルとした次の4

* 崇城大学 工学部建築学科助教授 工博 (正会員)

種類であり,側面図と断面図を図-1に示す. 1) MBS 試験体:提案するスラブで,躯体部分は両 端で長さ550mmの範囲で口型断面,その内側をU 型断面のプレキャストスラブとし,さらに,そ のU型断面の上に5枚の平面パネル(図-1中の 平面パネルA,B,厚さ54mm)を口型断面上縁の 高さに揃えて水平に敷き並べている.平面パネ ルは,U型断面部分の上面にM16の全ねじ切り棒 を支柱として突立て,平面パネルを上下からナ ットで締め付けている.口型断面部分と平面パ ネルあるいは平面パネル同士は相互には接続さ れていない.平面パネルの構築方法の詳細を図 -1中の断面Aの詳細図に示す.

この試験体の実験目的は,耐力・変形性状が 次に示す MUS 試験体と同等以上であることを, また平面パネルを敷き並べることによってどの ような変状を示すかを確認することにある.

試験体の支持は単純支持とし,載荷は2点集 中荷重形式とする.

 2) MUS 試験体: MBS 試験体の躯体部分における耐力・変形の検討用の試験体である.支持形式も 載荷方法も MBS 試験体と同様である.

3) MCY 試験体: スラブ・梁接合部の曲げ性状を 検討するための試験体であり,スラブと梁部分 (スタブ)とから構成される.ロ型断面部分の上

部フランジ部の端面に深さ 26mm の逆くさび状と した剪断ほぞを設け(図-1中の平面 D 参照), 下部フランジ部の端面は平滑としている.スタ ブ部分は場所打ちコンクリートを打設している. 支持は1端固定,他端自由とする片持ち梁形式 とし,載荷は自由端集中荷重形式とする.

4) MCN 試験体: 試験体の外観は MCY 試 験体と同一であるが,口型断面部分の上 部フランジ部の端面に剪断ほぞを設け ず,下部フランジ部の端面と共に平滑と している .この試験体に対する実験の目 的は, MCY 試験体との実験結果の比較に より,破壊形式の違いや逆くさび状の剪 断ほぞの効果などを確認することであ る.支持形式,載荷方法ともに MCY 試験 体と同様である.

各試験体の主筋詳細と使用部品を表 - 1 に示す.

2.2 試験体の製作方法

MBS, MUS, MCY, MCN 試験体の U 型ス ラブ部分は高流動コンクリートで打設 し,蒸気養生を行った後,材令3日で脱 型した.MCYとMCN 試験体のスタブ部分 は,高流動コンクリートの材齢8日で, 型枠内に配筋を施した後,場所打ちコン クリートを打設し,1週間湿潤養生を行 い,1週間後(材令8日)にスタブ部分の 型枠を脱型して完成させた.

2.3 測定項目

各試験体の測定は荷重,たわみ,鉄筋

歪,コンクリート歪およびひび割れについて行 った.このうち,たわみと鉄筋歪測定位置を図 - 2 に示す.

2.4 載荷方法

加力骨組図を図-3に示す.

2.5 使用材料

表-1

		鉄筋比(全断	コンクリート面
髶	配筋	面積に対す	から鉄筋中心ま
		る割合)	での距離(mm)

試験体の各部分の主筋詳細と使用部品

位置		配筋	面積に対す	から鉄筋中心ま		
			る割合)	での距離(mm)		
U型断	中段筋	:D10-2	0.202%	上面から 50		
面部分	下端筋	: D10-4 , D6-3	0.540%	下面から 33		
		D10-2	0.202%	下面から 66		
口型断	上端筋	: D10-4 , D6-3	0.288%	上面から 33		
面部分		D10-2	0.108%	上面から 66		
	中段筋	:D10-2	0.108%	上面から 250		
	下端筋	: D10-4 , D6-3	0.288%	下面から 33		
		D10-2	0.108%	下面から 66		
平面パオ	ネル Α,Β	ダブル配筋 D6	@66,かぶり	厚さ10 ,ただし ,		
		ボルト穴周囲は D6@33 補強				
スタブ音	『 分	上端筋:D16-2 下端筋:D16-2 あばら				
		筋:D6-7(ただし,梁の主筋として)				
M16ねじ	切り棒	全ねじ切り,長さ235mm				
ボルト受	をけ	D22(片側ねじ穴 M16 , 深さ 40mm) , 全長 100				
		mm				
上端アン	/カー受	D19(片側ねじフ	穴M12,深さ	35mm),全長 200		
け		mm ,5本/1試験体当たり				
上端アンカー D13(片側ねじ切り M12,長さ 30mm),全長						
		210mm , 180 度フック付き ,				
	5 本 / 1 試験体当たり					
上端アン	上端アンカー支D13,全長210㎜,180度フック付き,					
持棒		5本/1試験体当たり				
下端アン	/カー 受	D19(片側ねじフ	☆M12,深さ	35mm),全長 200		
け		mm,3本/1試験体当たり				
下端アン	/カー	D13(片側ねじ切り M12,長さ 30mm), 全長				
		210mm,フック	なし,3本/	1 試験体当たり		

MBS, MUS, MCY, MCN 試験体の口型 および U 型断面部分に用いた高流動 コンクリートのプレキャストコンク リートと, MCY, MCN 試験体のスタブ 部分および平面パネルに用いた場所 打ちコンクリートの機械的性質を表 -2,3に示す.

3. 実験結果

3.1 ひび割れ状況

最終ひび割れ状態を図-4に示す. MBS 試験体は,平面パネルの下面に 生じたひび割れが拡大した後パネル 自身の上面でコンクリートが圧壊し た.そのため,躯体部分はU型断面部 分の下面にひび割れが分散して見ら れるもののひび割れ幅の拡大や,中央 部上面のコンクリートの圧壊がみら れない.MUS 試験体は中央部下面のひ

び割れが進展し最終状況に至った.破壊は中央 部鉄筋の降伏とそれにともなう下面のひび割れ の拡大による曲げ破壊であった MBS 試験体 MUS 試験体ともに口型断面部分にはひび割れが生じ ていない.

MCY, MCN 試験体は口型断面と U 型断面の境で ある入隅部のひび割れが拡大することにより曲 げ破壊が起こり,最終状況に至った.打継ぎ部 やスタブ部分にはひび割れは生じなかった.

3.2 荷重-たわみ関係

表-2 コンクリートの機械的性質

コンクリート	高流動コンクリート				場所打ちコンクリー ト		
適用試験体	MB	MBS, MUS, MCY, MCN				N , 平面	ョパネル
養生種別	蒸	気	水中	蒸気	気中	水中	気中
材令(日)	3	28	28	75	28		67
圧縮強度	38.6	54.9	52.2	59.8	42.4	41.6	42.1
ヤング係数	-	32.4	33.9	33.2	31.7	31.9	31.3
圧縮強度時歪	-	0.344	0.316	0.357	0.287	0.276	0.301
割裂引張強度	-	3.76	3.32	4.22	2.92	3.30	3.38
スランプ(cm)	58(フロー値)				10.5		
「単位] F縮・割裂引張強度・N/mm ² ヤング係数・10 ³ ×N/mm ² F縮強度時本・0							

表-3 鉄筋の機械的性質

品質	D10(SD295A)	D6(SD295A)	D16(SD295A)	
適用試験体	MBS , MUS	MBS , MUS	MCY , MCN	
	MCY , MCN	MCY , MCN		
標準直径(mm)	9.53	6.0	15.9	
公称断面積(mm ²)	71	32	199	
降伏点応力(N/mm²)	358	336	383	
ヤング係数(10 ³ ×N/mm ²)	183	173	201	
引張強度(N/mm ²)	496	497	583	
降伏点歪(%)	0.196	0.199	0.204	

MBS 試験体にお いて,最初に加 力点位置にあ る平面パネル の下面にひび 割れが発生し た(29.80kN)後, U型断面部の中 央部下面にひ び割れが発生 (30.87kN) する まで中央点の たわみは荷重 の増加ととも に直線状に進 展した.中央部 下面の下端筋 が 2000 μ を超 えて降伏

平面パネル上面の加力点位置でコンクリートが 圧壊し(46.53kN),一時荷重が低下した.その後, 平面パネルの圧壊した位置の下と U 型断面上面 との間に鋼板を敷き詰め,再載荷を行った結果, 再び荷重が増大した.その載荷の増加とともに 平面パネルの破損が著しくなり,荷重が最大 (49.80kN)に達した後は荷重の増加はなく,また ジャッキのストローク長が限界に達したので測 定を終了した.

MUS 試験体において,最初にU型断面部の中央 部下面にひび割れが発生(17.32kN)するととも に剛性が低下し,更に中央部下面の下端筋が降 伏(31.11kN)した後最大荷重(36.83kN)に達し, 以後,荷重はほとんど増加せずたわみだけが大 きく進展した.

MCY 試験体と MCN 試験体については, ロ型断面 と U 型断面の界面位置の入隅部分にひび割れが 発生(MCN 試験体に対し 4.90, MCY 試験体に対し 5.23kN) した後,入隅部分にある中段筋が降伏 (MCN 試験体に対し 18.40, MCY 試験体に対し

16.90kN),更に最大荷重(MCN試験体に対し21.00, MCY 試験体に対し 20.66kN) に達した後,荷重は ほとんど増加せずたわみだけが大きく進展した. この両試験体についても荷重-自由端のたわみ 関係は典型的な Tri-Linear 曲線となった . MCY 試験体と MCN 試験体との相違は口型断面部分の 上端面における剪断ほぞの有無だけであるが、 荷重-自由端のたわみ関係においてはその差異 が見られず,ほぼ同じような履歴となった.

3.3 荷重-鉄筋歪関係

MBS と MUS 試験体の荷重 鉄筋歪関係として, U 型断面部分の中央部中段筋の場合を図 - 7 に, 下端筋の場合を図-8に示す(鉄筋歪の測定位 置は図-2参照).

両試験体の下端筋は荷重 - たわみ曲線と同じ ような履歴を示している.一方,U型断面部分の 中央部中段筋の歪は,両試験体とも,下端筋の 歪が降伏歪に達するまでは圧縮歪となっている が,最大荷重に近づくにつれて徐々に引張り歪 に転じた.

MCY と MCN 試験体の荷重 鉄筋 歪関係として, ロ型断面と U 型断 面の界面位置の入り隅部分の中 段筋の場合を図 - 9に, ロ型断面 端部の上部部分からスタブ部分 に埋め込まれているアンカー筋 の場合を図 - 10に示す(歪の測定 位置は図 - 2参照). MCY 試験体 と MCN 試験体の入隅部分の中段 筋の歪は,加力終了まで同じよう な Tri-Linear 型の履歴を示した. スタブ部分に埋込まれているア ンカー筋の歪は, ロ型断面部分の

上端面に剪断ほぞを設けていない MCN 試験体の 方が,設けている MCY 試験体よりも,荷重の増 加に対して歪の進展が大きい.特に,MCY 試験体 での降伏点荷重 16.8kN と同じ荷重に対する MCN 試験体の測定点 B₁での歪は MCY 試験体の同点で の値の約2.9倍の大きさとなっている.これは, 剪断ほぞを設けると,スラブからスタブへの引 張側応力の伝達はアンカー筋と剪断ほぞを介し て行われるが,剪断ほぞがない場合,その分ア ンカー筋の応力負担が大きくなり,そのため歪 が大きくことを示している.しかしながら,両 試験体ともに試験体上部の入り隅部分のひび割 れが拡大進展して破壊しているため,最大荷重 時において降伏点歪の約 10~25%程度の値を示 しているに過ぎない.

3.4 考察

MBS と MUS 試験体について

MBS 試験体のひび割れ発生荷重,鉄筋降伏荷 重および最大荷重とも MUS 試験体の場合の約 1.4~1.8 倍となったが,これは敷き並べた平面パ ネルが M16 ねじ切り棒で躯体部分に締結されて いるために剛性を有し,その分耐力を高めたた めと推測される.また,MBS 試験体の曲げ剛性 も MUS 試験体の場合よりかなり高い.

表-4に示す実験結果の値と計算値との比較 を示す.MUS 試験体に対して鉄筋降伏時の実験 値は計算値とよく対応し,MBS 試験体での同実

表-4 実験結果と計算値との比較

試験	算定	ひび割れ発生		鉄筋降伏時の荷		最大荷	比(最大荷
体名	位置	荷重((kN)	重(ト	kN)	重(kN)	重 / 鉄筋
		実験値	実/計	実験値 実/計		実験値	降伏荷重
		(計算値)		(計算値)			計算値)
MBS		30.87	1.66	44.86	1.41	49.80	1.57
	中央	(20.35)		(31.78)			
MUS	下面	17.32	0.85	31.11	0.98	36.83	1.16
		(20.35)		(31.78)			
MCY	U 型断	5.23	0.69	16.90	1.00	20.66	1.23
	面入	(7.53)		(16.84)			
MCN	り隅	4.90	0.64	18.40	1.03	21.00	1.20
	部	(7.71)		(17.55)			

(注1) MBS 試験体は, 躯体部分についてのみ算定した.即ち, MUS 試験体と同一である.
(注2) 鉄筋降伏時荷重の算定にあたり,降伏モーメントは RC 構造計算規準によった.
(注3) MCY と MCN 試験体では入り隅部分の中段筋が降伏しているので,鉄筋降伏時荷重の算定にあたっては,斜め補強筋を考慮した.

験値は計算値の約1.4倍を示した.

(2) MCY と MCN 試験体について

剪断ほぞの効果を確認するための試験体であ る MCY と MCN 試験体はひび割れ発生荷重,鉄筋 降伏荷重ともほぼ同じであり,耐力向上に対し て,剪断ほぞの有無による違いが見られなかっ た.これは,逆にいえば,上端アンカーが5-D13 と比較的大きい配筋となっているために,この アンカー配筋だけで,剪断ほぞがある場合と同 等な応力伝達がスラブからスタブに行われたと 考えられる.両試験体とも鉄筋降伏時荷重は実 験値と計算値がよく対応した.

4. まとめ

1) 躯体部分のU型断面上に平面パネルを配置す ると,配置しない場合よりも耐力・剛性ともに 上昇し,また,躯体部分も破壊しかった.

 2) 片持ち梁形式の加力実験ではロ型端部では なく入隅部分で曲げ破壊した.また今回の実験 では,荷重 たわみ履歴に対して,端部の引張 り側に設けた剪断ほぞの有無による違いが現れ なかった.

3) MUS, MCY および MCN の各試験体の終局曲げ荷 重は日本建築学会推奨の略算式で推定できる.

参考文献

日本建築学会:鉄筋コンクリート構造計算規準・同解説,pp.145,1999年