論文 高強度せん断補強鉄筋を用いたRCはりのせん断耐力に及ぼすコン クリート強度の影響

黒岩 俊之^{*1}·谷村 幸裕^{*1}·岡本 大^{*1}·佐藤 勉^{*2}

要旨:本研究では、コンクリート圧縮強度(f'c)が 30N/mm²以下のRCはり部材に対して、 高強度鉄筋をせん断補強鉄筋として用いた場合の載荷実験を行い、既往の研究データを加え て、高強度せん断補強鉄筋の補強効果に及ぼすコンクリート圧縮強度の影響について検討し た。その結果、f'c が 40N/mm²以下の場合に高強度せん断補強鉄筋の補強効果を低減する必 要性を確認し、現行の設計方法によって、せん断耐力を精度良く算定する方法として、設計 上考慮するせん断補強鉄筋の降伏強度を f'c によって制限する方法を提案する。 キーワード:高強度せん断補強鉄筋,鉄筋コンクリート梁、せん断耐力、コンクリート強度

1. はじめに

せん断補強鉄筋に対して高強度鉄筋を適用す ることは、過密配筋による施工不良の防止およ び配筋作業の簡略化など、RC構造物の耐久性お よび経済性を向上させる有効な手法の一つであ る。しかしながら、高強度鉄筋をせん断補強鉄 筋として使用すると、終局状態においての斜め ひび割れ幅が過大になり、ひび割れ面における 骨材のかみ合いや引張鉄筋のダウエルアクショ ン等によって抵抗するせん断耐力が低下するこ とが考えられ、「コンクリート標準示方書 構 造性能照査編」¹⁾(以後、土木学会示方書)なら びに「鉄筋コンクリート造建物の終局強度型耐 震設計指針・解説」²⁾(以後、終局強度型指針) においては、設計において考慮するせん断補強 鉄筋の降伏強度に制限値を設けている。

特に土木学会示方書では、既往の梁部材によ る研究等³⁾⁴⁾⁵⁾を踏まえ、コンクリート圧縮強度 f_c が 60N/mm²以上の場合、せん断補強鉄筋の降 伏強度 f_{wy} を800N/mm²以下に、 f_c が 60N/mm² 未満の場合、 f_{wy} を400N/mm²以下に制限している。 しかし、高強度鉄筋を用いたRC部材に関する研 究の多くは、 f_c が50N/mm²を超える範囲で行わ れており、実際の構造物に多く使用されている 30N/mm²以下のコンクリートに関する検討は十 分とは言えない。また、 $f_c < 60$ N/mm²の場合に、 $f_{wy} \le 400$ N/mm²とする耐力計算では実験結果を過 小評価するとの報告⁴⁾があることなどからも、高 強度せん断補強鉄筋を有効に活用するためには、 設計上考慮するせん断補強鉄筋の降伏強度の制 限値を再検討する必要があるといえる。

本研究では、コンクリート圧縮強度が 20~ 30N/mm²程度の RC 梁部材の実験結果と,既往の 研究成果をもとに、高強度せん断補強鉄筋の補 強効果について検討を加え、設計において考慮 するせん断補強鉄筋の降伏強度の制限値を提案 する。

2. せん断耐力の算定方法

本検討におけるせん断耐力の算定方法を以下 に示す。棒部材のせん断耐力(V_y)は、土木学 会示方書に従い、式(1)により算定する。

$V_y = V_c +$	$+V_s$			(1)
• •	11.)	ML 17 기억 VM 17 7	Π , λ ,	· 누두 구요

- V_c: せん断補強鋼材を用いない棒部

 材のせん断耐力
- *V_s*: せん断補強鋼材により受け持た
 れる棒部材のせん断耐力
- ここで、Vcの算定式の基本となっているのが、
- *1 (財)鉄道総合技術研究所 構造物技術研究部コンクリート構造 工修 (正会員)
- *2(財)鉄道総合技術研究所 研究開発推進室 工博 (正会員)

表-1 試験体諸元

No.	b	h	d	а	a/d	引張鉄筋		せん断補強鉄筋			f'_{ck}	
	(mm)	(mm)	(mm)	(mm)		規格	本数	$p_t(\%)$	規格	ピッチ	$p_{w}(\%)$	(N/mm^2)
1									SD785-D6	300	0.07	21
2									SD785-D6	150	0.14	21
3	300	450	400	1200	3.0	SD490	4	2.14	SD785-D6	100	0.21	21
4						-D29			SD785-D6	300	0.07	30
5									SD785-D6	150	0.14	30

b:断面幅 **h**:断面高さ **d**:有効高さ **a**:せん断スパン長 p_t :引張鉄筋比 p_w :せん断補強鉄筋比 f_{ck} :コンクリート圧縮強度の目標値 SD785:引張降伏強度の特性値が785N/mm²相当の鉄筋

二羽らの研究⁶による式(2)である。

$$V_c = f_{vc} \cdot \beta_d \cdot \beta_p \cdot \beta_a \cdot b \cdot d$$
 (2)
ここで、 $f_{vc} = 0.2 \cdot \sqrt[3]{f'_c}$, $\beta_d = \sqrt[4]{1000/d} \le 1.5$
 $\beta_p = \sqrt[3]{100p_t} \le 1.5$, $\beta_a = 0.75 + 1.4d/a$
 b : 断面幅 d : 有効高さ
 f'_c : コンクリート圧縮強度
 p_t : 引張鋼材比 a : せん断スパン長

なお、既往の研究⁷において、高強度コンクリートを用いる場合に $f_{vc} \leq 0.72$ N/mm² とする制限 値を設けることの妥当性が示されていることか ら、本検討においてもそれに従うこととした。

また、V_sはトラス理論に基づく式(3)により算 定する。

$$V_s = A_w \cdot f_{wv} / s_s \cdot z \tag{3}$$

- ここで、A_w: 区間 s_s におけるせん断補強鉄筋 の総断面積
 - fwy: せん断補強鉄筋の設計降伏強度

ss: せん断補強鉄筋の配置間隔

z: 応力中心間距離で, d/1.15

なお、土木学会示方書においては、コンクリ ートの圧縮強度に応じて、式(3)における f_{wy} に 対して制限を設けている。本検討では、実験値 と式(1)~(3)に基づいた計算値と実験値との比較 により、 V_y 算定時の f_{wy} の制限値について検討 を行った。

3. 実験概要

3.1 試験体

試験体諸元を**表**-1 に示す。着目パラメータは、 コンクリート圧縮強度(f'_{ck}), せん断補強鉄筋 比(p_w)とした。 f'_{ck} を 21, 30 N/mm²の 2 水準, p_w を 0.07, 0.14, 0.21%の 3 水準とした。 せん断補強鉄筋として,高強度鉄筋(SD785 相 当)を使用した。**表**-2 に材料試験結果を示す。

試験体は単純梁試験体とし、せん断破壊を生 じるように設計した。その形状を図-1に示す。 載荷方法は、2点集中の単調載荷とし、支点は試 験体の回転変形および軸方向変形を拘束しない ように、ピン+スライド支持とした。

3.2 実験結果

(1) 破壊性状

試験体は、すべて引張鉄筋が降伏する前にせん断破壊した。各試験体間でひび割れ性状に大きな違いはなく、斜めひび割れが載荷点近傍の 圧縮縁に貫通した時点で荷重低下した(図-2)。

図-3 に荷重-変位関係を示す。各試験体は 250~300kN付近でせん断ひび割れを生じて剛性 が低下している。No.1~No.3, No.4, 5を比較す ると, *p*wの増加に伴い最大荷重が増加している。

No.1 と No.4, No.2 と No.5 は, それぞれ p_w を 等しくして, f'_c について着目した試験体である。 せん断ひび割れによる剛性低下時の荷重は,

-956-

No.1 および No.4 が 240kN 程度, No.2 および No.5 が 280kN 程度であり, f'_c の 違いよる明確な差はなかった。しかし, 剛性低下は f'_c の低い試験体の方が大 きく,最大荷重の差は, No.1 と No.4 で 約 120N/mm², No.2 と No.5 では約 $60N/mm^2$ となった。すなわち, せん断

補強鉄筋の補強効果をせん断ひび割れ発生以降 のせん断耐力と仮定した場合, f'c の違いにより せん断補強鉄筋の補強効果に差があるといえる。

(2) せん断耐力

表-3に実験結果の一覧を示す。なお、せん断 耐力の計算値は、せん断補強鉄筋の降伏強度 f_{wy} に材料試験結果を用いて算出した。また、せん 断耐力の実験値は、最大荷重時の作用せん断力 (最大荷重÷2)とした。

表より, No.4 を除いてせん断耐力の実験値は 計算値を下回った。同様に,最大荷重時のせん 断補強鉄筋のひずみは,材料試験より求めた 0.2%offset 降伏ひずみに達していない。すなわち, せん断補強鉄筋の強度が十分に発揮されていな いと考えられる。

4. fwv の制限値の検討

4.1 検討対象試験体

今回の実験で得られたデータと,既往の研究 ³⁾⁴⁾⁵⁾⁷⁾⁸⁾によるデータをあわせて,せん断耐力の評 価を行った。

検討の対象とした試験体を表-4 に示す。全 24 体の内,普通強度コンクリート(22.6~ 55.2N/mm²)と高強度せん断補強鉄筋(706~ 1403N/mm²)を組み合わせた試験体が14 体であ り,今回の実験のデータを含んでいる。また, 高強度コンクリート(73.5~98.5N/mm²)と高強 度せん断補強鉄筋(814~1138N/mm²)を有して いる試験体は10 体である。試験体のせん断スパ ン比(a/d)は3.0 であり,載荷方法は,単純梁 として一方向載荷を行ったものである。最大荷 重時のせん断力をせん断耐力の実験値(V_yEXP) として検討を行った。

表-3 実験結果の一覧

No.	実験値	배프	ŀ算値 (kl	N)	実験値/計算値	せん断補強鉄 筋のひずみ
	VyEXP	V _c CAL	V _s CAL	V _y CAL	VyEXP/VyCAL	ε _{max} / ε _{0.2%}
1	174	135	72	207	0.84	0.83
2	237	134	143	277	0.86	0.79
3	274	135	215	349	0.79	0.50
4	235	147	72	218	1.07	1.16
5	274	149	143	292	0.94	0.81
-	,县十古	舌時のよ	/ 账/ 建金 梁	比密のハギ	7 0.20	/ offerst Thrit 7

ε 0.2%: 0.2% offset ひずみ

図-3 荷重-変位関係

4.2 コンクリート圧縮強度 f'_cの影響

図-4 にコンクリート圧縮強度と、V_sEXP と V_sCAL の比の関係を示す。V_sEXP は、せん断耐 力の実験値(V_vEXP)から、式(1)により算定し た V_c を差し引いた値とし, V_s CAL は, f_{wy} を降伏強度 の実測値として式(3)によ り算定した。

図によれば、コンクリ ート圧縮強度が減少する に従い、実験値と計算値 の比が小さくなる傾向が 見られる。また、 f'_c が $40N/mm^2$ 以下の試験体の 多くが 1.0 を下回ってお り、過大評価となってい る。 f'_c が $40N/mm^2$ 程度以 下の RC 梁部材に対して、 高強度せん断補強鉄筋の 補強効果を低減する必要 性があるといえる。

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	表-4 検討試験体一覧												
$No.$ mm $n(mm)$ $a(mm)$ a' $E \hat{m} \hat{m} \hat{g}$ $\bar{P}(\hat{m})$ $\bar{P}(m$	封驗休	部材	部材	有効	せん断		コンクリート	引張銵	+筋	せん断	補強鉄師	筋	- 1 -1-
Interpretation b (mm) d (mm) a (mm) f_c (N/mm ²) p_i (%) f_{yy} (N/mm ²) p_y (%) ** mv 1 300 450 400 1200 3.0 23.4 520 2.14 974 0.070 2 2 300 450 400 1200 3.0 22.6 520 2.14 974 0.141 2 3 300 450 400 1200 3.0 23.0 520 2.14 974 0.211 2 4 300 450 400 1200 3.0 23.0 520 2.14 974 0.141 2 5 300 450 400 1200 3.0 31.5 520 2.14 974 0.141 2 TRTR-5 500 750 690 2070 3.0 54.3 704 1.98 1029 0.225 y 7) RTRI-8 500 750 690	No	幅	高さ	高さ	スパン	a/d	圧縮強度	降伏強度	鉄筋比	降伏強度	鉄筋比	降伏	人樹
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110.	$b (\mathrm{mm})$	$h({ m mm})$	d (mm)	<i>a</i> (mm)		f'_{c} (N/mm ²)	f_{sy} (N/mm ²)	$p_t(\%)$	f_{wy} (N/mm ²)	$p_w(\%)$	*	JULY.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	300	450	400	1200	3.0	23.4	520	2.14	974	0.070		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	300	450	400	1200	3.0	22.6	520	2.14	974	0.141		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	300	450	400	1200	3.0	23.0	520	2.14	974	0.211		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	300	450	400	1200	3.0	29.9	520	2.14	974	0.070	у	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	300	450	400	1200	3.0	31.5	520	2.14	974	0.141		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RTRI-5	500	750	690	2070	3.0	33.9	704	1.98	1029	0.225	у	7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RTRI-6	500	750	690	2070	3.0	54.3	704	1.98	1029	0.225	у	7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RTRI-7	500	750	690	2070	3.0	35.6	704	1.98	1403	0.160	у	7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RTRI-8	500	750	690	2070	3.0	54.7	704	1.98	1403	0.160	у	7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MD02-1	400	400	350	1050	3.0	27.8	698	1.84	747	0.158		8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MD02-2	400	400	350	1050	3.0	32.7	754	1.84	706	0.158	у	8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MD01-2	400	400	350	1050	3.0	49.4	698	1.84	747	0.158	у	5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MD01-3	400	400	350	1050	3.0	51.0	698	1.84	803	0.178	у	5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MD01-4	400	400	350	1050	3.0	55.2	698	1.84	747	0.211	у	5)
TK98-6 350 450 400 1200 3.0 98.5 724 2.27 814 0.362 3) TK98-10 350 450 400 1200 3.0 95.0 724 2.27 814 0.362 3) TK98-10 350 450 400 1200 3.0 95.0 724 2.27 1138 0.121 y 3) TK99-1 600 450 400 1200 3.0 75.0 744 2.32 1028 0.119 y 4) TK99-2 525 450 400 1200 3.0 78.1 744 2.27 1028 0.136 y 4) TK99-3 435 450 400 1200 3.0 78.2 744 2.28 1028 0.164 y 4) TK99-4 350 450 400 1200 3.0 79.5 744 2.27 967 0.241 4)	TK98-4	350	450	400	1200	3.0	93.2	724	2.27	1138	0.090	у	3)
TK98-10 350 450 400 1200 3.0 95.0 724 2.27 1138 0.121 y 3) TK99-1 600 450 400 1200 3.0 75.0 744 2.27 1138 0.121 y 3) TK99-1 600 450 400 1200 3.0 75.0 744 2.32 1028 0.119 y 4) TK99-2 525 450 400 1200 3.0 78.1 744 2.27 1028 0.136 y 4) TK99-3 435 450 400 1200 3.0 78.2 744 2.28 1028 0.164 y 4) TK99-4 350 450 400 1200 3.0 79.5 744 2.27 967 0.241 4) TK99-10 600 450 400 1200 3.0 81.0 737 2.32 1028 0.159 y	TK98-6	350	450	400	1200	3.0	98.5	724	2.27	814	0.362		3)
TK99-1 600 450 400 1200 3.0 75.0 744 2.32 1028 0.119 y 4) TK99-2 525 450 400 1200 3.0 78.1 744 2.27 1028 0.119 y 4) TK99-2 525 450 400 1200 3.0 78.1 744 2.27 1028 0.136 y 4) TK99-3 435 450 400 1200 3.0 78.2 744 2.28 1028 0.164 y 4) TK99-4 350 450 400 1200 3.0 79.5 744 2.27 967 0.241 4) TK99-10 600 450 400 1200 3.0 81.0 737 2.32 1028 0.159 y 4) TK99-10 600 450 400 1200 3.0 75.3 709 1.98 1065 0.253 y	TK98-10	350	450	400	1200	3.0	95.0	724	2.27	1138	0.121	у	3)
TK99-2 525 450 400 1200 3.0 78.1 744 2.27 1028 0.136 y 4) TK99-3 435 450 400 1200 3.0 78.2 744 2.28 1028 0.136 y 4) TK99-3 435 450 400 1200 3.0 78.2 744 2.28 1028 0.164 y 4) TK99-4 350 450 400 1200 3.0 79.5 744 2.27 967 0.241 4) TK99-10 600 450 400 1200 3.0 81.0 737 2.32 1028 0.159 y 4) RTRI-3 500 750 690 2070 3.0 75.3 709 1.98 1065 0.253 y 7) RTRI-4 500 750 690 2070 3.0 73.5 709 1.32 1086 0.095 y	TK99-1	600	450	400	1200	3.0	75.0	744	2.32	1028	0.119	у	4)
TK99-3 435 450 400 1200 3.0 78.2 744 2.28 1028 0.164 y 4) TK99-4 350 450 400 1200 3.0 79.5 744 2.27 967 0.241 4) TK99-10 600 450 400 1200 3.0 81.0 737 2.32 1028 0.159 y 4) RTRI-3 500 750 690 2070 3.0 75.3 709 1.98 1065 0.253 y 7) RTRI-4 500 750 690 2070 3.0 73.5 709 1.32 1086 0.095 y 7)	TK99-2	525	450	400	1200	3.0	78.1	744	2.27	1028	0.136	у	4)
TK99-4 350 450 400 1200 3.0 79.5 744 2.27 967 0.241 4) TK99-10 600 450 400 1200 3.0 81.0 737 2.32 1028 0.159 y 4) RTRI-3 500 750 690 2070 3.0 75.3 709 1.98 1065 0.253 y 7) RTRI-4 500 750 690 2070 3.0 73.5 709 1.32 1086 0.095 y 7)	TK99-3	435	450	400	1200	3.0	78.2	744	2.28	1028	0.164	у	4)
TK99-10 600 450 400 1200 3.0 81.0 737 2.32 1028 0.159 y 4) RTRI-3 500 750 690 2070 3.0 75.3 709 1.98 1065 0.253 y 7) RTRI-4 500 750 690 2070 3.0 73.5 709 1.32 1086 0.095 y 7)	TK99-4	350	450	400	1200	3.0	79.5	744	2.27	967	0.241		4)
RTRI-3 500 750 690 2070 3.0 75.3 709 1.98 1065 0.253 y 7) RTRI-4 500 750 690 2070 3.0 73.5 709 1.32 1086 0.095 y 7)	TK99-10	600	450	400	1200	3.0	81.0	737	2.32	1028	0.159	у	4)
RTRI-4 500 750 690 2070 3.0 73.5 709 1.32 1086 0.095 y 7)	RTRI-3	500	750	690	2070	3.0	75.3	709	1.98	1065	0.253	у	7)
	RTRI-4	500	750	690	2070	3.0	73.5	709	1.32	1086	0.095	у	7)

y:最大荷重時に, せん断補強鉄筋のひずみが降伏ひずみに達していた場合

f

4.3 せん断補強鉄筋比 pw の影響

図-5 に p_w と、V_sEXP と V_sCAL の比の関係 を示す。図では、試験体のコンクリート圧縮強 度 ($f'_c=23$, 30N/mm², 28~33N/mm², 49~ 55N/mm²) ごとに、凡例を変えている。

図によると、 p_w と V_s の実験値と計算値の比に は、明確な関係は認められない。むしろ、4.2 で 述べたコンクリート圧縮強度の影響の方が支配 的になっていると考えられる。

4.4 fwv の制限値の評価

図-6にコンクリート圧縮強度と f_{wy} EXPの関係を示す。 f_{wy} EXPは、実験により得られたせん

断耐力 V_yEXP を用いて式(4)から算出した,最大 荷重時のせん断補強鉄筋の応力度である。

$$A_{wy}EXP = \frac{\left(V_y EXP - V_c\right) \cdot s_s}{A_w \cdot z}$$
(4)

また,図中には,せん断補強鉄筋が降伏しな かった試験体データを黒塗りの凡例で示し,以 下の制限値を併記している。

A—B :
$$f_{wy} \le 400$$
 (単位 : N/mm²)
C—D : $f_{wy} \le 800$
E—F : $f_{wy} \le 25 f'_c$

A−B および C−D は,前述した土木学会示方 書の制限値であり, E−F は,終局強度型指針に 示されている,せん断補強鉄筋の応力度限界の

規定である。

図によると, f'_c が 20~32N/mm²の範囲でせん 断補強鉄筋が降伏していないものは, f'_c の低下 に伴い f_{wy} EXP が減少する傾向が見られる。これ に対して, A—B の制限値ではすべての範囲で実 験値を過小評価し, C—D では 20~32N/mm² の 範囲において実験値を過大評価することがわか る。一方, E—F は 20~32N/mm²の範囲において f_{wy} が減少する傾向を概ね評価している。 $f_{wy} \leq 25$ f'_c の制限値を設けることによって, f'_c が 30N/mm² 以下の領域を含めた実験データを適切 に評価することが出来ると考えられる。

4.5 fwv の制限値の検証

 f_{wy} の制限値の検証は、以下の①~⑤のケースについて行った。

- *f_{wy}*の制限値を設けず, *f_{wy}* =降伏強度の実測 値として式(1)~(3)をそのまま適用した方法。 (V_yCAL1)
- ② f'_c が 60N/mm²未満について $f_{wy} \leq 400$ N/mm², f'_c が 60 N/mm²以上につい て $f_{wy} \leq 800$ N/mm² とする 方法。土木学会示方書の規 定。(V_yCAL2)
- ③ f_{wy}の制限値を f'c に関わ らず f_{wy} ≦ 800N/mm² とす る方法。(V_vCAL3)
- ④ *f_{wy}* をコンクリート圧縮強 度の一次関数*f_{wy}*≦25*f*'_c と する方法。終局強度型指針

の規定。(V_yCAL4)

⑤ f_{wy}≦25 f'cカ³つf_{wy}≦800N/mm²とする方法。 (V_yCAL5)

 ①~⑤の評価手法について、せん断耐力の算 定精度を検証する。f'cと実験値/計算値の関係
 を図-7~11に、平均値および変動係数を表-5 に示す。

ケース①では、 f_{wy} の制限値を考慮していない ため、特に f'_c が40N/mm²未満の実験データを、 過大評価している。 f'_c が 32N/mm²未満につい て、実験値と計算値の比(V_yEXP/V_yCAL1)の 平均値 μ および変動係数 C.V.(C.V.= σ/μ , σ : 標準偏差)は、 μ =0.90、C.V.=11.2%となって いる。

 f'_c によって、段階的に制限を設けているケース②では、実験データはすべて安全側の評価となっている。しかし、 f'_c が 60N/mm² 以上の結果と比較して、 $32 \leq f'_c < 60$ N/mm² では、実験データを過小評価している。

 f_{wy} に一定の制限を設けたケ ース③の場合, $32 \leq f'_c < 60$ N/mm²については, $\mu = 1.20$, C.V.=14.0%であり, ケース② に比べて実験値を妥当に評価 している。しかし, f'_c が 32N/mm²未満では $\mu = 0.96$, C.V. =10.6%となり,実験データの 多くを過大評価している。

 f_{wy} の上限値を 25 f'_c とした ケース④では、µおよび C.V.は、全ての検討ケ ースの中で一番良い整合性を示した。特に、 f'_c が 60N/mm²未満の場合のµおよび C.V.は、 f'_c が 32N/mm²未満においてµ=1.04、C.V.=8.2%、32 $\leq f'_c < 60$ N/mm²ではµ=1.11、C.V.=7.3%であ り、実験値と良く整合している。

以上の結果をまとめると、式(1)~(3)によって せん断耐力を算定する場合、設計上考慮する f_{wy} は、25 f'_c を上限値とすることが妥当であると考 えられる。ただし、本検討の範囲では、降伏強 度の規格値が 800N/mm² 超えるせん断補強鉄筋 を用いた試験データは 2 体 (RTRI-7,8 : SD1275 相当)と少ない。したがって、降伏強度の規格 値が 800N/mm² 超えるせん断補強鉄筋を用いる 場合は、25 f'_c 以下とした f_{wy} を 800N/mm²で頭 打ちにするか、実験等により確認することがよ いと考えられる。25 f'_c 以下とした f_{wy} に対して、 800N/mm²の上限値を設けた場合についてケー ス⑤に示す。実験値との整合性はケース④に劣 るが、概ね実験値を妥当に評価している。

5. まとめ

本研究で得られた結果を以下にまとめる。

- (1) f'_cが 40N/mm²以下の RC 梁部材に対して,高 強度せん断補強鉄筋の補強効果を低減する 必要性が再確認された。
- (2) 高強度せん断補強鉄筋の補強効果に与える
 影響としては、*p*wの影響に比較して、*f*'cの影響の方が支配的であった。
- (3) f_{wy} の上限値を 25 f'_c とすることで、その計算

f_{wy} に一定の制限を設けたケ 表-5 各ケースの平均値μと変動係数 C.V. (V_yEXP=最大耐力)

検討ケース		1	2	3	4	5
						$f_{wy} \leq 800 \text{N/mm}^2$
		f_{wy} 上限なし	土木学会示方書	$f_{wy} \leq 800 \text{N/mm}^2$	$f_{wy} \leq 25 f_c'$	かつ $f_{wy} \leq 25 f_c$
(N/mm^2)	$\overline{\ }$	VyEXP/VyCAL1	VyEXP/VyCAL2	VyEXP/VyCAL3	VyEXP/VyCAL4	VyEXP/VyCAL5
	μ	0.90	1.22	0.96	1.04	1.04
$23 \leq f'_c < 32$	σ	0.100	0.105	0.102	0.085	0.085
	C. V.	11.2%	8.7%	10.6%	③ ④ $\widehat{f}_{wy} \leq 25f'_c$ $\widehat{f}_{wy} \leq 25f'_c$ $\widehat{f}_{wy} \leq 25f'_c$ $\widehat{f}_{wy} \geq 25f'_c$ $\widehat{f}_{wy} \leq 25f'_c$ $\widehat{f}_{wy} \geq 25f'_c$ $\widehat{f}_{wy} \leq 25f'_c$ $\widehat{f}_{wy} \geq 25f'_c$	8.2%
	μ	1.06	1.58	1.20	1.11	1.20
$32 \leq f'_c < 60$	σ	0.062	0.258	0.167	0.081	0.167
	C. V.	5.8%	16.3%	14.0%	7.3%	14.0%
	μ	1.22	1.37	1.37	1.22	1.37
$60 \leq f'_c < 100$	σ	0.183	0.204	0.204	0.183	0.204
	C. V.	15.0%	14.9%	14.9%	15.0%	14.9%
全体	μ	1.09	1.40	1.21	1.14	1.23
$23 \le f' < 100$	σ	0.185	0.244	0.233	0.151	0.212
$23 \equiv j_c < 100$	C.V.	17.1%	17.4%	19.2%	13.2%	17.2%

値は実験値と良い整合性を示すことがわか った。

参考文献

- 1)土木学会編:2002 年制定・コンクリート標準 示方書(構造性能照査編),2002
- 2)日本建築学会編:鉄筋コンクリート造建物の終 局強度型耐震設計指針・同解説, 1990
- 3)下野一行ほか:高強度材料を用いた RC 梁部材 に関する実験的研究,コンクリート工学年次論 文報告集, Vol.20, No.2, pp.1039-1044, 1998
- 4)下野一行ほか:高強度材料を用いた RC 梁部材のせん断耐力に関する実験的研究,コンクリート工学年次論文報告集, Vol.21, No.3, pp.175-180, 1999
- 5)原夏生ほか:自己充填型高強度高耐久コンクリ ートを用いた RC 梁のせん断耐力,コンクリー ト工学年次論文報告集, Vol.23, No.3, pp.925 ~930, 2001
- 6)二羽淳一郎ほか: せん断補強鉄筋を用いない
 RC はりのせん断強度式の再評価, 土木学会論
 文集, 第 372 号/V-5, 1986
- 7)黒岩俊之ほか:高強度材料を用いた RC 梁のせん断耐力に関する実験的検討,コンクリート工 学年次論文集, Vol.24, No.2, pp.733~738, 2002
- 8)土屋智史ほか:コンクリートの自己充填性の有 無がせん断補強筋の補強効果に及ぼす影響に 関する検討,土木学会第57回年次学術講演会, 2002