論文 自由縁付近に載荷されるRCスラブの押し抜きせん断破壊性状

平坂 賢次^{*1}·檜貝 勇^{*2}·斉藤 成彦^{*3}

要旨:本研究は,スパン長の異なる,2辺単純支持されたRCスラブにおいて,載荷位置を 自由縁方向に変化させた実験を行い,スパン長が押し抜きせん断耐力に及ぼす影響を考察す るとともに,FEM解析の妥当性を検討したものである。その結果,自由縁の影響による耐力 低下に対し,スパン長の影響はほとんど無いこと,また,土木学会コンクリート標準示方書 での耐力算定法は妥当とは言えないことを示した。

キーワード:押し抜きせん断破壊,自由縁,スパン長,三次元有限要素法解析

1. はじめに

RC スラブの押し抜きせん断耐力は,スラブの 中心付近に載荷される場合については精度良く 算定できる。しかし,自由縁付近に載荷される 場合については,未だ不明な点が多いのが現状 である。

著者等¹⁾は三次元有限要素法を用いて, RC ス ラブの押し抜きせん断破壊の解析を行い,破壊 性状の評価が可能であることを示した。

自由縁付近に載荷される場合の耐力低下は, スラブ厚,載荷板寸法,スパン長等の影響を受けると考えられるが,本研究では,まずスパン 長に着目し,スパン長の異なる,2辺単純支持 された RC スラブにおいて,載荷位置を自由縁方 向に変化させた実験を行った。実験結果に基い て,スパン長が押し抜きせん断耐力に及ぼす影 響を考察するとともに,FEM 解析の妥当性を併 せて検討したものである。

土木学会コンクリート標準示方書には,スラ ブの自由縁付近に載荷される場合の押し抜きせ ん断耐力の算定法が示されているので,これに ついても検討を行った。

2.設計せん断耐力算定式
 土木学会コンクリート標準示方書[構造性能

照査編]²⁾では、『一方向スラブで自由縁付近に載荷される場合には、有効幅(図 - 1)を持つ棒部材と考えて「棒部材の設計せん断耐力」を算定するのが良い』としている。

この方法は,自由縁付近に載荷される場合, 荷重端から自由縁までの距離 c が減少し,有効 幅 b_eが減少することで,耐荷力の低下を考慮し たものである。

ここで,有効幅b。は以下の式より算定する。

自由縁から遠い場合(c≥1.2x(1-x/l)の場合) b_e = v+2.4x(1-x/l) (1) 自由縁に近い場合(c<1.2x(1-x/l)の場合)

$$b_e = c + v + 1.2x(1 - x/l)$$
 (2)

*1	山梨大学大学院	医学工学総合教育部			(正会員)
*2	山梨大学大学院	医学工学総合研究部	教授	工博	(正会員)
*3	山梨大学大学院	医学工学総合研究部	助教授	博(工)	(正会員)

3. 非線形三次元有限要素法

3.1 非線形三次元有限要素法の概要

本解析に用いた有限要素法は,8 接点のアイソ パラメトリック 6 面体 1 次要素で,数値積分に 用いる Gauss Point の数は8 である。ポストピー ク領域までの求解のため変位増分法を用い,収 束計算としては Newton-Raphson 法を用いた。

3.2 ひび割れモデル

ひび割れモデルについては「不連続回転ひび 割れモデル」を用いた³⁾。このモデルは,固定ひ び割れモデルと回転ひび割れモデル両者の特徴 を併せ持っており,主ひずみ方向の角度変化量

が小さい場合では,固定ひび割れモデルとし てひび割れ面にせん断伝達を許し,が大きい ときでは回転ひび割れモデルとしてせん断伝達 を発生させないモデルである。

3.3 コンクリート要素

主応力 - 主ひずみ関係

本解析では,3方向の主応力-主ひずみ関係と してそれぞれ一軸応力下での構成則を用いた。 従って三軸応力下での破壊基準は考慮していな い。ここで用いられている圧縮破壊エネルギー (G_{fc}),引っ張り破壊エネルギー(G_{ft})は Nakamura and Higai⁴⁾の研究によった。

(1) 圧縮応力を受けるコンクリート

圧縮応力下のコンクリートの応力 - ひずみ関係は,図-2に示すように,最大応力(fc')まで を二次放物線とし,その後応力が直線的に零ま で減少するモデルを用いた。

ここで,零応力時のひずみ(m)は圧縮破壊エ ネルギー(G_{fc})を考慮して(5)式により決定した。 ここで用いる,等価長さ(l_{eq})は要素の体積立方根 とした。

なお,基本的には一軸応力下での構成則を用 いているのであるが,直交方向の引張りひずみ (₁)の存在によって圧縮強度が低下する Collins⁵⁾のモデルは使用している。

$$\sigma_{2\max} = f_c' \frac{1}{0.8 + 0.34 \left(\frac{\varepsilon_t}{\varepsilon_0}\right)} \le f_c'$$
(6)

図 - 4 解析モデル(対称 1/2 モデル)

(2) 引張応力を受けるコンクリート

引張応力下でのコンクリートの挙動について は図 - 3に示すように,引張強度(ft)まで直線的 に応力が増加し,軟化域ではコンクリートの引 張応力(t)とひび割れ幅(w)の関係及び引張破 壊エネルギー(Gft)を用いて,(7)式のように定め た。ここで,引張応力-ひび割れ幅関係は,いわ ゆる-3 乗モデル⁶である。

3.4 鉄筋

鉄筋の応力 - ひずみ関係は, bi-liner とし,降 伏点以降の第二勾配は初期勾配の 1/100 とした。 また,鉄筋は軸力のみに抵抗するトラス要素と してモデル化し,剛性をコンクリートの剛性に 重ね合わせた RC 要素を用いているので,付着は 完全で鉄筋のすべりは生じないと仮定したこと になる。

3.5 要素分割

解析モデルの概要を図 - 4 に示した。 × 方向 を主方向, y 方向を配力方向, z 方向を高さ方 向とした。x 方向の対称性より 1/2 モデルを使用 した。要素分割については, z 方向は4 分割で一 定とした。 × 方向, y 方向については, 載荷点 下及び自由縁を含む要素以外の要素寸法を 50 × 50 mmで一定とした。

支点は単純支持とし,z方向変位のみ拘束した。

4. 実験概要

本研究では実験変数を,スパン長(a)および自 由縁から載荷点までの距離(e)とし,スパン長 800,1100,1400mmのRCスラブを実験対象と した。以下,スパン長(a)が 800 mm であるなら a800 と表記し,自由縁から載荷位置までの距離 (e)が 500 mm であるなら, e500 と表記する。実 験に用いた供試体の概要を図 - 5 に示す。RCス ラブの幅は 1000 mm 厚さは 100 mm で一定とし た。コンクリートは,実構造物で一般的な強度 の範囲内である 30 N/mm²を目標圧縮強度とし, 材令7日で試験が行えるよう早強ポルトランド セメントを使用した。コンクリートの示方配合 を表 - 1 に示す。鉄筋は, a800 供試体について は D10 を使用し, a1100 及び a1400 供試体では D13 を使用した。D10 の降伏応力は 377 N/mm², ヤング係数は 1.86×10⁵ N/mm²である。D13 の降 伏応力は 377 N/mm², ヤング係数は 1.78×10⁵ N/mm² である。配筋方法は,単鉄筋直交配筋と し、鉄筋の中心間隔は両方向とも 50 mm とした。 主鉄筋の有効高さ(d_m)は70 mm で一定とした。 よって,配力鉄筋の有効高さ(da)は,a1100 供試 体では 60 mm, a1400, a1100 供試体では 57 mm となる。供試体の支持方法については,図-6 に示すように,相対二辺をH鋼により支持し, 他の二辺を自由としたものである。H鋼は,高 さ×幅 195×150 mm, ウェブ厚 5.5 mm, フラン

表 - 1 コンクリートの示万配	台
------------------	---

骨材最大	W/C	単位量(kgf/cm ³)				
寸法(mm)	%	W	С	S	G	減水材
20	66	176	267	878	1017	0.53

2		圧縮強度	耐荷力		般近特度
a	e		実験値	解析值	胖们相 反
(mm)	(mm)	(N/mm^2)	$P_E\left(kN\right)$	P_{C} (kN)	P_{C} / P_{E}
	500	29.2	159	135	0.85
	500	29.3	163	136	0.83
1400	250	32.8	161	124	0.77
	200	28.7	152	113	0.74
	100	31.9	108	102	0.94
	500	29.3	175	150	0.86
1100	250	29.1	160	127	0.79
	100	29.5	111	101	0.91
	500	31.3	167	168	1.01
	500	29.0	139	152	1.09
800	350	31.9	147	164	1.12
	200	28.0	127	120	0.94
	50	27.9	71	87	1.23
	500	31.7	199	243	1.22
	400	28.6	174	218	1.25
500	300	26.9	180	203	1.13
	200	28.2	160	168	1.05
	100	31.1	129	135	1.05

表 - 2 各供試体における耐荷力

ジ厚 8 mm のものを用いた。供試体と H 鋼の接 合には, 10 のボルトを各々8 本ずつ用いた。 この支持方法は,支点端部でのスラブの浮き上 がりを拘束するが,H 鋼の変形により,水平方 向の移動及び回転を許すため,単純支持に近い ものである。載荷に用いる鋼板の寸法は 100×60 ×30 mm である。載荷速度は,約 0.25 kN/sec で ある。

5. 実験及び解析結果

実験で用いた供試体の実験変数,材料特性と 共に,実験及び解析から得た耐荷力を表 - 2 に 示した。ただし,a500 供試体は,古内等⁷⁾の行 った実験である。使用された鉄筋は D10 で,降 伏強度は 400 N/mm² である。主鉄筋の有効高さ は 80mm,載荷板の寸法は 100 × 100 × 30mm であ る。

5.1 破壊性状について

本研究で用いた全ての供試体は,押し抜きせん断破壊した。以下,スパンが1100mmのa1100 供試体を例に挙げて破壊性状について示す。

(1)荷重 - 載荷点変位関係

実験及び解析結果で得た荷重 - 載荷点変位関 係を図 - 7 に示した。実験結果では,どの位置 に載荷される場合でも,最大荷重以後,荷重が 急激に低下する押し抜きせん断破壊の特徴を示 している。解析でも,押し抜きせん断破壊の特 徴を示しているが,いずれの場合でも,剛性は やや大きく,最大荷重時の変位は小さく評価さ

れる傾向がある。

(2)斜めひび割れ性状

実験終了後,載荷板の中央を通り,支点に直 交方向(a)及び支点に平行方向(b)に RC スラブ を切断して,斜めひび割れ状況を観察した。図 -8は,実験結果・解析結果を上・下に並べ, 各載荷位置に対する斜めひび割れ状況を示した ものである。

実験結果を見ると,支点に直交方向では左右 対称に斜めひび割れが発生している。また,載 荷位置が変化しても,斜めひび割れの状況に大 きな相違は無い。一方,支点に平行方向の斜め ひび割れについては,スラブ中心付近に載荷さ れる場合には左右対称に発生しているのに対し, 自由縁付近に載荷される場合には,自由縁側の

図 - 8 a1100 供試体における斜めひび割れ性状

斜めひび割れは,途中で切断されたような形と なり十分に発達していない。

解析におけるひび割れは,各ガウスポイント での 1の方向と大きさで表現したものである が,(a)(b)両方向について上で述べた,実験に おけるひび割れ特性を良く表現している。

5.2 押し抜きせん断耐力について

図 - 9 は,実験における耐荷力を,スラブ中心 に載荷される場合を1として表したものである。 ここで,2 体実験を行った場合にはその平均値を 示している。

どのスパンにおいても,自由縁付近に載荷される場合には,耐荷力は中心に載荷される場合 よりも低下している。自由縁のごく近傍に載荷 された場合(a800e50)では,耐荷力は中心に載 荷された場合の46%になっており自由縁が耐力 低下に及ぼす影響が大きい事がわかる。

また,多少ばらつきはあるものの,耐荷力の 低下の様子はどれも似ており,スパン長が耐荷 力低下に及ぼす影響は,ほとんど認められない。

次に,FEM 解析により耐荷力をどれくらい評価出来るのかを検討した。図 - 10 は,各スパンにおける,各載荷位置で耐荷力の解析値(P_c)と実験値(P_E)の比(P_C / P_E)をとり,解析精度を表したものである。解析精度はおおよそ ± 20 %以内で,平均値は99%である。また,eの変化に伴う特定の傾向は認められない。従って,解析による押し抜きせん断耐力の評価は妥当であると思われる。

図 - 11 は,耐荷力の低下の様子をより詳しく 見る為,載荷位置を増やして計算した結果を示 したものである。

どのスパンにおいても載荷点が自由縁から 300mm 程度で耐荷力の低下が始まり,自由縁か ら100mmの位置では,耐荷力は中心に載荷され る場合の6割から7割に低下する。自由縁から 200mmの位置での低下には,スパンの違いによ る影響が多少認められるが,全体的には明らか な影響は無いと判断される。

図 - 12 に土木学会の算定法による,耐荷力低

下の様子を示した。ここで図中のマークは実験 値を表している。土木学会の方法では,スパン 長が長ければ,耐荷力の低下は自由縁からの距 離が遠い所から始まり,反対にスパン長が短け れば荷重がかなり自由縁に近づくまで低下しな い事となり,実験結果とは異なっている。また, スパンが短い場合には危険側の結果を与える事 になる。

さらに,支点付近に載荷される場合には,実 験的には押し抜きせん断耐力は増加するのであ るが,この方法では逆に低下することとなるな ど,土木学会の方法では,耐荷力を十分に表現 出来ているとは言えない。

6. まとめ

スパン長の異なる RC スラブにおいて,載荷位 置を自由縁方向に変化させた実験及びFEM 解析 を行い,以下の結論を得た。

(1)自由縁付近に載荷される場合の押し抜きせん断耐力は,中心付近に載荷される場合よりも低下するが,耐力の低下にはスパンの影響はほとんど認められない。

(2) 三次元有限要素法により,スパン長を変化 させた RC スラブが,自由縁付近に載荷される場 合の破壊性状を,おおむね評価することができ る。 (3) 土木学会コンクリート標準示方書に示されている,自由縁付近に載荷されるスラブの耐力 算定方法では,耐荷力の低下を十分に表現できているとは言えない。

参考文献

- 1) 八若幹彦・檜貝 勇・中村 光・斉藤成彦: 3D-FEM による RC スラブの押し抜き破壊性 状の解析,構造工学論文集 vol.47A,pp.1339 ~1346 2001.4
- コンクリート標準示方書[構造性能照査編]
 〔2002 年制定〕 土木学会
- 3) 山谷 敦: 有限要素法による RC 部材のせん 断挙動に関する研究,山梨大学博士論文
- Nakamura, H. and Higai, T. : Compressive Fracture Energy and Fracture Zone Length of Concrete, Seminar on Post-peak Behavior of RC Structures Subjected to Seismic Load, pp.259-272, 1999, JCI
- M. P. Collins, D. Mitchell : Prestressed Concrete Basics, Canadian Prestressed Concrete Institute, 1987
- A. Hillerborg : Stability Problems in Fracture Mechanics Resting, Fracture of concrete and Rock, Elsevier Applied Science, pp.369-378, 1989
- 7) 古内 仁・高橋義裕・角田与史雄: RC スラブの自由縁付近載荷に対する実用せん断設計法の研究,土木学会論文集 No.532/V-30, pp.141-149,1996.2