論文 炭素繊維シートと CFRP 定着体による部材接合部の曲げ補強に関する 研究

加藤 貴久*1・久部 修弘*2・三井 宜之*3・武田 浩二*4

要旨:現在,炭素繊維シート補強において部材接合部の曲げ補強が必要な場合は,一般に鋼材とアンカーボルトによる定着体が用いられている。しかし,鋼材による定着体は炭素繊維シートに比べ耐久性や施工性に劣るという問題があった。本研究では,これらの問題点を解決する為に,全て CFRP で構成される炭素繊維シート用定着体を開発し,定着体要素試験及び部材試験によってその耐荷力性能を検証した。その結果,曲げが作用する部材接合部において,CFRP 定着体による定着方法は,鉄筋降伏レベルまで補強効果を有することが確認された。

キーワード: CFRP 定着体,炭素繊維,接合部,曲げ補強

1. はじめに

コンクリート部材の補強工法の一つとして, 炭素繊維シート(以下 CFS)による補強工法が 挙げられる。CFS は,軽量,高強度,高耐久性 などの特徴を有する事から,柱部材の耐震補強, 床版の疲労耐久性向上等,多くの適用実績を有 している。

CFS を用いたコンクリート部材の曲げ補強へ の適用については、多数研究¹⁾がなされており、 設計施工指針²⁾などにもその適用方法について 示されている。しかし、部材接合部等 CFS の定 着長が十分確保できない場合(図-1)について の研究事例は少なく、そのほとんどが鋼製定着 体³⁾によるものである。また、実際の施工でも 鋼製定着体が多く使用されている。

本研究では、この鋼製定着体より耐久性があ り、施工性に優れたオール CFRP 定着体(写真-1)を開発し、その適用性について検討を試み た。まず、コンクリートと炭素繊維ロッド(以 下 CFRP ロッド)の付着試験によって、コンク リート躯体への定着性能について確認した。次 に、CFRP 定着体の引張試験によって定着体の破

写真-1 CFRP 定着体

壊メカニズムを把握し,さらにコンクリート部 材接合部の曲げ試験を行うことによって曲げモ ーメント作用下における本定着システムの妥当 性について評価を行った。

- 2. 要素試験
- 2.1 コンクリートと CFRP ロッドの付着試験
- (1) 試験方法

試験体は、1000×1000×200mm の無筋コンク リート平板にドリルを用いて穿孔を行い、CFRP

*1 三菱化学産資(株) カーボン・アルミナ繊維事業部 (正会員)
*2 三菱化学産資(株) カーボン・アルミナ繊維事業部 (正会員)
*3 熊本大学 工学部環境システム工学科教授 工博 (正会員)
*4 熊本大学 工学部環境システム工学科助手 工博 (正会員)

表-1 付着試験使用材料

广相强度 52.21Vipa
外径 10.0mm 公称断面積 71.8mm ² 引張強度 2550MPa 引張弾性率 147GPa
曲げ強度 50MPa 引張せん断強度 13MPa 圧縮強度 64MPa

ロッドをエポキシ樹脂パテを用いて定着して製作した。表-1に付着試験使用材料を示す。載荷は、CFRP ロッド端部を鋼製スリーブで固定し、 300kNセンターホールジャッキによって CFRP ロッドに引張力を与えた(図-2)。

(2) 試験結果

試験結果を図-3に示す。全ての試験体が付着 破壊により最大耐力に至り,最大付着耐力は埋 め込み長とほぼ線形相関関係にあることが確認 された。

2.2 CFRP 定着体の引張試験

(1) CFRP 定着体設置方法

コンクリート入隅部への穿孔は、本工法用に 開発した専用ドリルを用いてスラブ面から高さ 10mm 位置(スラブ面から孔中心までの距離)に 穿孔し、CFRP ロッドを配置した。また、波型 CFRP 板設置に用いる樹脂は、施工上、ある程度 の粘性が必要とされるため、力学特性が含浸樹 脂と同等以上である、エポキシ樹脂パテを用い た。

波型 CFRP 板設置は、CFS 面及び波型 CFRP 板凹部には、エポキシ樹脂パテを塗布した後に 波型 CFRP 板を貼付する方法とした。

(2) 試験方法

表-2に波型 CFRP 板使用材料を示す。波型 CFRP 板を構成する CFS の積層繊維方向は,縦, 横,斜め方向をそれぞれ組み合わせる事とした。 波型 CFRP 板定着長さは,100,150,200mm の 3ケースとし,定着長さ100mm のケースでは, 波型 CFRP 板に CFRP ロッドによる面外固定アン カー(埋込長 30mm,アンカー頭はエポキシ樹脂 製)を設置したものを製作した。 **表-3**に試験

図-2 コンクリートと CFRP ロッドの付着試験体

体一覧を示す。引張試験は図-4に示す様に、反 力壁を介した CFRP ロッド端部を鋼製スリーブ 定着し、300kNセンターホールジャッキによっ て CFRP ロッドに引張力を与えることとした。 反力壁のコンクリート強度は30MPaであった。 (3) 試験結果

3) 武殿和朱

表-3に最大耐力と破壊状況,図-5に試験体 破壊状況の模式図を示す。面外固定を行ってい ない試験体は,概ね図-5に示すA部分のCFSと コンクリート間で最初に付着切れが発生し、そ の後B部分の付着切れが進展すると共にO点を 支点として波型 CFRP 板が浮き上がり,最終的 にはC部分に示すエポキシ樹脂パテと波型 CFRP 板間の付着切れが急速に進展し,破壊に至 った。

波型 CFRP 板の積層構成による影響をみると、 積層数が多くかつ斜め方向にも繊維を配したも のの方が引張耐力が大きい傾向にあった。

CFRP ロッド面外固定アンカーを用いた試験 体の場合は,波型 CFRP 板の浮き上がりは観察 されず,波型 CFRP 板から CFRP ロッドが引抜け ることによって最大耐力が決定した。

波型 CFRP 板を剛体と仮定し、O点まわりの 曲げモーメントによる釣合い条件(図-6)から算 出した見かけのコンクリート付着応力度と波型 CFRP 板定着長さの関係を図-7に示す。定着長 長さが長くなるとコンクリート付着応力度σct が減少する傾向にあるが,面外固定アンカーを 用いる事で付着耐力が改善される傾向が見られ た⁵⁾。

A:波型CFRP板下部 CFS~コンクリート間付着破壊

B:CFSのみの部位 CFS~コンクリート間付着破壊

C:波型CFRP板下部 エポキシ樹脂パテ~CFS間付着破壊

表-2 波型 CFRP 板使用材料

CFRP ロッド	外径 公称断面積 引張強度 引張弾性率	8.0mm 41.6mm ² 2550MPa 147GPa
エポキシ樹脂パテ硬化物性	表-1 参照	
含浸接着樹脂	エポキシ樹朋	旨(CFS 貼付用)
	目付量	300g/m ²
CFS(高強度品)	引張強度	3400MPa
	引張硝性索	230GPa

 $M1 = (L \land 0 \ Ct \land w) \div 2 \land L \land 2/3$ $M2 = F \land h \quad (2)$

図-6 定着部応力の仮定

表-3	面内引張試験体及び試験結果−	-覧
-----	----------------	----

試驗休 No	定着体幅	CFRP 板	定着体長	CFRP 板	の炭素繊維	積層構成	試験結果		
时间大学 110	(mm)	固定	L(mm)	0°	90°	45°	最大耐力(kN)	破壊状況(図-5参照)	
No1		_		1層	1層	_	31.59	A→C	
No2		固定有		1層	1層	_	54.89	CFRP ロッド抜け→定着体凸部割れ	
No3		_	100	2 層	2 層	_	33.18	A→B→C	
No4	150	固定有		2 層	2 層	—	61.98	CFRP ロッド抜け	
No5	-	_		1層	1層	1層	39.98	A→B→C	
No6		_	150	2 層	2 層	_	61.61	A→B→C	
No7		_	200	2 層	2 層	_	71.58	A→C	

3. 接合部曲げ試験

以上の要素試験結果を踏まえ,コンクリート 構造物の接合部に曲げモーメントが作用した場 合を想定した部材試験を行った。

3.1 CFRP 定着体を用いた接合部曲げ試験

(1) 試験方法

曲げ試験体は,梁中心間距離 4000×6000mm, 梁幅 300mm の建築物スラブを想定し,スラブ厚 と配筋を決定した。図-8に試験体形状を示す。 試験体種類は,図-9に示す様に,無補強(No1),

①, ②式より, $\sigma ct=F \times h \times 2 \div [(L \cdot w) \times L \times 2/3]$

CFS 貼付のみ補強(No2)(端部定着なし), CFS +鋼材による端部定着補強(No3), CFS+CFRP 定着体(No4)による端部定着補強試験体の4体 とした。CFRP 定着体は,前述の引張試験の結果 より,最も有効と考えられる積層構成(CFS を 0°1 層,90°1 層,45°1 層,135°1 層の計4 層に積層)とした。CFS は,要素試験と同様, 高強度品を用いる事とした。表-4に接合部曲げ 試験使用材料を示す。

No3, No4 試験体定着部アンカーは,高弾性 CFS 2 層 (Tcf=65.2kN/150mm 幅)の終局荷重時 引張力を上回るものとした。CFRP ロッド 10 φ 終局荷重時引張力は,146.4kN,アンカーボルト M20 終局荷重時引張力は,72.2kN である。

No3 試験体の鋼材とCFS の付着長は,鋼板と CFS の引張せん断試験⁶⁾から付着応力度 10N/mm²としCFS の終局荷重時引張力を十分負 担できる付着長さを確保するようにした (150mm 定着時 付着力 225kN/150mm 幅)。

載荷試験は、図-10 に示す様にベース部分4ヶ 所に配した PC 鋼棒に軸力(100kN/本)を導入す ることによって固定し、アーム長 900mmの位置 を油圧ジャッキにて加力した。実験では、鉄筋 ひずみが 200µ, 1000µの時点で一旦除荷し、そ の後破壊に至るまで単調載荷を行った。また、 載荷時には同時に、図-9、図-10 に示す位置で の変位及び引張鉄筋、コンクリート、定着体、 CFS のひずみを測定した。

コンクリート	圧縮強度 圧縮弾性率	42.9MPa 30.5GPa			
CFRP ロッド	表-1 参照				
エポキシ樹脂パテ硬化物性	表-1 参照				
含浸接着樹脂	エポキシ樹脂	(CFS 貼付用)			
鉄筋及びアンカーボルト	SD295A				
	目付量	300g/m^2			
UFS (言語性P)	引張強度	1900MPa			
(局弾性品)	引張弾性率	640GPa			

表-4 接合部曲げ試験使用材料

(2) 試験結果

表-5に各試験結果一覧を示す。無補強試験体(No1), CFS 貼付けのみ試験体(No2)では,

引張側コンクリート接合部に曲げひび割れが発 生し,引張鉄筋降伏後最大耐力に達した。

CFS 貼付けのみ試験体 (No2) は,鉄筋降伏荷 重は無補強とほぼ同等の荷重であったが,鉄筋 降伏後の試験体剛性が若干無補強のものより大 きかった。これは接合部から 310mm 位置に貼付 けた鉄筋及びコンクリートのひずみを比較して も明らかな様に (表-5), CFS の補強効果によ ってスラブ部材の変形が小さくなった為と推察 される。

鋼材による端部定着を行った試験体 (No3) は, 鉄筋ひずみが,約 1000 μ 発生時に CFS と鋼材背 面 (CFS との接着面)の部分的な剥離が起こり 急激に耐力が低下すると同時に鉄筋降伏に至っ た。その後,荷重の増加は見られたが,鋼材背 面が完全に剥離し,荷重低下した。鋼材部分は, ほとんどコンクリートスラブの変形に追随して いない状況であった (写真-2)。鋼材の CFS 定 着側に貼付けた 3 軸ゲージの最大ひずみは,117 μ 程度であった。

CFRP 定着体による端部定着を行った試験体 (No4) は,引張鉄筋降伏までは何ら破壊の兆候 は観察されなかった。鉄筋降伏後,コンクリー トベース部分に埋設された CFRP ロッド周辺を 避ける様に接合部に曲げひび割れが徐々に入り, その後,ベース部分のせん断破壊によって最大 耐力が決定した。この時,CFRP ロッドの抜け, 波型 CFRP 板の剥離,割れなどはなく CFRP 定着 体がスラブ部分の変形に十分追従していたこと が確認された(写真-2)。従って,ベース部が せん断破壊に至らなければ更に荷重は増加した と推察される。

図-11 に波型 CFRP 板表面ひずみ分布を示す。 波型 CFRP 板の主応力は CFRP ロッドの引張方向 に沿うように発生しており, CFRP ロッドによる 躯体側への応力伝達が有効になされていたと推 察される。

図-12 に試験体 (No4) の最大耐力時接合部分 の断面ひずみ分布を示す。CFRP ロッドのひずみ は,3600 μ 程度であることから,CFRP ロッドの 負担引張力は、38kN 程度となる。この CFRP ロッド引張力は前述の要素試験レベルよりも低 い荷重レベルであり、それ故に CFRP 定着体の 破壊に至らなかったと考えられる。

図-13 に荷重-載荷点変位関係,図-14 に荷重 -鉄筋ひずみ関係を示す。

無補強試験

300

引張鉄筋歪

ジ位置

.

ート歪

7

ゲージ位置

圧縮側

|CFS 歪ゲージ位置 2 ヶ所

鉄筋, コンクリート歪ゲージ

位置は No1 試験体と同様

アングル歪ゲージ位置

(以下同じ)

(以下同じ)

2ヶ所

M20-4 本

波型 CFRP 板

. 歪ゲージ位置 6ヶ所

50

CFS のみ(No2)

30

無補強(No1)

40

...CFRPロッド φ 10-4本

波型 CFRP 板 150×150 4 枚

/L-150×150×12

. /高弾性 CFS2 層

150

No1

ΩC

শ

1000 900

	H=10 位置鉄筋歪 2000 μ 時		最大耐力時									
試験体 No	荷重 (kN)	H=310 位 置鉄筋歪 (µ)	荷重 (kN)	CFS 歪(µ)		波型 CFRP 板歪(μ)		コンクリート 圧縮歪(µ)		鉄筋歪(μ)		
				H=75 位置	H=310 位置	平板 部左	凸部	平板 部右	H=20 位置	H=310 位置	H=20 位置	H=310 位置
No1	19.81	425	25.53	—	_	_	_	—	1896	599	-	917
No2	19.87	68	28.66	130	247			_	2582	242		466
No3		_	40.48	_	606	117(鋼材部歪)			557	344	*1076	*423
No4	50.22	497	54.11	_	1158	1045	988	1195	1940	459	1985	573

表-5 試験結果一覧

※鋼材と CFS の剥離時の鉄筋ひずみ

- 4. まとめ
- 4.1 要素試験
 - CFRP ロッドとコンクリートの付着力は、
 エポキシ樹脂パテを用いる事によって確保 できることが確認された。
 - (2) 波型 CFRP 板の繊維積層構成を変化させる ことや面外固定アンカーを用いることによ って定着耐力の増加が図れることが明らか となった。
- 4.2 接合部曲げ試験
 - (1) 接合部曲げ補強では、定着体による補強を 施さないと、補強効果はほとんど期待できな いことが確認された。
 - (2) 鋼材定着体は、一軸引張せん断試験から得られた CFS と鋼材の付着応力度を用いて十分な定着長を確保したが、鉄筋ひずみが1000 μ程度で CFS と鋼材背面が剥離し、補強効 果が低い結果となった。これは、コンクリー ト部材の回転変形に鋼材が追従しなかった

為と推察される。

(3) CFRP 定着体は,鉄筋降伏まで十分な補強 効果を有していた。

参考文献

- 例えば、村上聖、下田誠也、三井宜之ほか: 連続繊シートによる鉄筋コンクリート梁の 曲げ補強設計に関する研究、日本建築学会構 造系論文集、第561号、pp.185-192、2002.11
- コンクリート部材の補修・補強に関する共同 研究報告書(Ⅲ),建設省土木研究所構造橋 梁部橋梁研究室,炭素繊維補修・補強工法技 術研究会,1999.12
- 3) 有留義朗,金久保利之ほか:繊維シートによるRC構造物の耐震補強におけるシート端部 定着に関する研究,コンクリート工学論文集, 第10巻第2号,pp.119-130,1999.5
- 2001 年版既存鉄筋コンクリート造建築物の 耐震改修設計指針同解説,日本建築防災協会, 2001.10
- 5) 久部修弘ほか: CFRP ロッドと波型 CFRP 板 を用いた炭素繊維シート用端部定着方法に 関する研究,日本建築学会大会学術論文集 (北海道), pp.1071-1072, 2004.8
- 6) 炭素繊維シートによる鋼製橋脚の耐震補強 工法研究報告書,炭素繊維シートによる鋼製 橋脚の補強工法ガイドライン(案),財団法 人土木研究センター,2002.7