## 論文 コンクリートせん断亀裂の発生-進展挙動追跡のための実験法の提案

高瀬 裕也\*1・佐藤 良介\*2・和田 俊良\*3・上田 正生\*4

要旨:本論文では,コンクリートせん断亀裂の発生-進展挙動を解明するために,自動制御 によって亀裂面を3次元拘束する「4軸力システム」を開発した。この自動化には PID 制御 理論を採用しており,適切な制御パラメータ*K<sub>p</sub>*を知るために,亀裂幅一定のせん断亀裂実験 を執り行って,「亀裂面のせん断応力・垂直応力・せん断変位・垂直変位の推移」を示した。 ここでは,手動実験法による結果も得ており,相互の比較から,手動実験法に精度の限界が あることが示された。同時に,比例ゲイン*K<sub>p</sub>*を変えた亀裂実験からは,*K<sub>p</sub>*を40程度に設定 すると,安定したデータが計測できることが明かとなった。

キーワード:コンクリートせん断亀裂,亀裂応力,亀裂変位,PID 制御,LabVIEW

#### 1. はじめに

コンクリートせん断亀裂の応力伝達が,鉄筋 コンクリート(以下,RCと略記する)部材の変 形性状を解析する際の重要な機構であることは, 周知のとおりである。この複雑な応力機構を対 象とした実験法<sup>1~0</sup>を概覧したところ,その加力 軸の自由度(数)の不足から,亀裂面の相互接触 が,意図の通り3次元的に拘束しきれていない 例が多いように思われる。

せん断亀裂面の高精度な拘束加力実験を行う には,一般に偶発的にそして乱れがちに形成さ れる亀裂面を,ある程度安定した状態で形成さ せ,そのせん断接触を高精度に3次元拘束する 必要がある。

これには,従来の実験装置の構成を格段に高 精度・多機能化せざるを得ないことは明らかで ある。即ち,現況では「自動PID(P:Proportional, I:Integral,D:Difference)制御理論に基づく 計測・多軸加力システム」を構築することが,最 も実際的であるように思われる。

本論文は,「自動計測・制御4軸加力システム」 を実際に設計して組立て,亀裂垂直変位を一定 に保持した実験の結果を比較し,加力方法の相 違とPID制御パラメータの影響について,若干の 検討を行ったものである。

# 2. コンクリート亀裂面の高精度3次元拘束を 可能とする本実験システムの概要

これまの実験では,せん断亀裂面の垂直変位 (以下,亀裂幅 と称す)を拘束するために, 2軸の静的オイルジャッキや単軸アクチュエー タシステムが導入されてきた。しかし,亀裂面の 任意の3次元位置を確保するには,2軸以下の 加力機器では困難と思われ,本システムでは,後 述の機器構成を考慮して「4軸加力」を採用する ことにする。

また,Bujadham<sup>®</sup>のRC部材実験の観察によると, コンクリート亀裂面のせん断変位の増減範囲 は±1.5mm程度,亀裂幅は0.1mm~1.0mmで変化 すると計測されており,亀裂幅の変位量は可 成り小さい。従って,この小さな亀裂幅を前述の 4軸加力によって人為制御することは,現時点 では不可能に近く,これを自動PID制御すること が,最善の方法のひとつに違いないものと判断 される。

本2節では,上述の実験構想に基づいた4軸

- \*1 北海道大学 大学院工学研究科社会基盤工学専攻修士課程 (正会員)
- \* 2 北海道大学 大学院工学研究科社会基盤工学専攻博士課程 工修 (正会員)
- \*3 北海道職業能力開発大学校 建築科講師 工博 (正会員)
- \*4 北海道大学 大学院工学研究科社会基盤工学専攻教授 工博 (正会員)

加力システムを構築するが,ここでは,本研究で 使用する試験体諸元を掲げた後に,加力機器,荷 重と変位の検出,自動計測・制御の順に記述し て,「亀裂変位の3次元自動計測・PID制御システ ム」について詳説することにする。

なお周知のとおり,上記のPID制御は,比例(P)・ 積分(I)・微分(D)の概念による制御法であり,そ の本システムへの適用の詳細は次節で触れる。

#### 2.1 せん断亀裂試験体の概要

本実験システムを決定する最主要パラメータ は,亀裂面積の大きさであり,勿論この値によっ て,加力フレーム,加力機器,動力源の全ての基 本要素が設計されることになる。

著者らは,最大骨材寸法20mm程度の粗骨材が, 十分配材していると看做せる10cm×10cm(100cm<sup>2</sup>) を亀裂面の上限面積と定めることとし,既往の 実験結果<sup>1~6)</sup>の最大応力値を参考として,せん断 荷重と垂直荷重の最大値を算定しており,先述 の亀裂変位の範囲を含めて,本実験システムで 必要とされる性能を,表1に掲げる。

図 - 1に, せん断亀裂試験体の詳細を示す。図 -1より, せん断亀裂試験体を95mm × 160mm × 250mmの直方体とし, その中央位置に100mm × 75mm(面積75cm<sup>2</sup>)の亀裂面が形成されるよう, 4 周囲に亀裂誘発切り欠きスリットを設けている。 本試験体の上下部の各々には,鋼製固定治具(ス チールキャップ)を4本の高力ボルトで取付け, 試験体との間隙に,無収縮セメントペーストを 流し込んで硬化させ,試験体とスチールキャッ プが一体化されたものを加力フレームへ装着し, 組込む。この時,下部スチールキャップは,加力 フレームへボルト締し,上部スチールキャップ は,後述の垂直ロードセルに割ピンで止めてい る。

## 2.2 せん断加力機器と垂直加力装置の解説

続いて,図-2に本実験システムの加力・計測 の概要を,写真-1に加力フレームの詳細を示 す。図-2と写真-1より明らかなように,加力 フレームは鉄骨構造とし,その諸元寸法は,加力 フレーム自体に局所的な余分な曲げモーメント が発生しないように,フレーム全体を極力コン パクトに製作した。

本研究では、「せん断加力によって惹起される せん断亀裂変位が、その応力伝達機構を如何よ うに遷移させてゆくのか」を検証するのが目的 である。

従って,本システムの構築においては,せん断力 の載荷は手動による静的加力で十分であるので本 実験では 垂直荷重と亀裂幅のみを自動制御するこ ととする。

表 - 2 に加力機器の性能一覧を示す。せん断加 力には,200kN静的オイルジャッキをフレーム両



表 - 1 本実験システムの必要性能

端に1本づつ固定し,この2本のジャッキ間の 中央に,スライディングテーブルを設置し,これに スチールキャップを冠した試験体を固定して,試験 体に作用する摩擦力を除去している。

亀裂幅を3次元で拘束するために,本システ ムでは,4本の50kNマイクロジャッキによる4 軸加力制御方式を採用する。4軸加力を採用す る理由は極めて単純で,試験体の形態が直方体 であり,この四隅を加力することが構成上簡潔 であり、しかも3軸加力よりも制御効率が格段 に向上するからである。

マイクロジャッキは,減速器(減速比25:1)を介 してサーボモータと連結され,このモータの回 転動力によりジャッキヘッドが上下に動作する。 モータは入力電圧が±10V,ジャッキヘッド最高 速度はおよそ0.5mm/secである。ヘッド速度は,制 御出力電圧に対してほぼリニアに変化し,その 最高速度値は,静的実験における亀裂開閉合に 即応する十分な速度を有している。

## 2.3 荷重値と変位量の検出部の解説

表-3に,計測器の性能一覧を示す。せん断変 位の計測は,試験体上下の中央位置の裏表に, 表3の25mm変位計を各々1本装着し,得られる 4つの変位量の相対差とする。またせん断応力

は,オイルジャッキのヘッドに装着した200kN ロードセルの読値を亀裂面積で除したもので求 められる。

亀裂幅 については,その亀裂幅の小ささから, より高感度のクリップ式変位計を採用し,その計測 点は亀裂面隅角部の4箇所とするが,これらの取付 け位置は垂直ロードセルの近傍である。また,垂直 応力 は,4本の垂直ロードセルによる計測値の総 和を亀裂面積で除して求めることとする。

## 2.4 自動計測・制御システムの詳細

図 - 3 に自動計測・制御のシステムの構成を, 表 - 4 に自動計測・制御機器の性能一覧を示す。

先に触れたように 本システムの計測・制御は , 亀 裂面へのせん断と垂直の2系統で構成し,前者 のせん断系統は自動化せずに,後者の垂直系統 のみを自動 PID 制御する。せん断荷重を試験体に 加えるには,垂直系統をモニタリングしながら 手動で制御するため本システムの全体構成におい て,せん断と垂直の2系統に,間接的な同期のみ が取られていることになる。



写真-1 加力フレームの詳細

表 - 2 加力機器の性能一覧

| サーボ装置名          | 最高速度        | 最大出力     |  |
|-----------------|-------------|----------|--|
| モータ             | 4500r/min   | 2.88N•M  |  |
| GRS.20AG-N000-P | 43001/11111 |          |  |
| 減速器             | 190r/min    | 12.75N•M |  |
| GRS.20AG-G25    | 1801/11111  |          |  |
| マイクロジャッキ        | 0.5mm/soo   | 50kN     |  |
| JA050DAL100SLT  | 0.5mm/sec   |          |  |

表-3 計測器の性能一覧

| 計測 | 則器名 | 型番      | 定格容量   | 定格出力<br>mV/V |
|----|-----|---------|--------|--------------|
| 水平 | 変位計 | CDP-25  | 25 mm  | 6.25         |
|    | 荷重計 | LC-20TV | 200 kN | 2.5          |
| 垂直 | 変位計 | DTC-A-2 | 2 mm   | 2.5          |
|    | 荷重計 | 自作      | 50 kN  | 0.28         |



ここに,自動制御における PID は,比例動作 P, 積分動作 I,微分動作 D のことであり,これらの 機能につては次項で解説する。

垂直系統では,LabVIEWを自動計測・制御の骨格 に据え,入力値としての4つの亀裂幅と4つの垂直 荷重を計測し,この応答制御値を4本独立にマイク ロジャッキへ電圧で出力するが,この処理系で は,AD・DA 変換に分解能16bitの信号処理機器と 励起電圧3.3Vのひずみアンプを用いている。

本システムのサンプリング周期は 80msec であ り,これは信号速度 10msec/チャンネルと垂直方 向の変位・荷重の各々のチャンネル数が4,即ち合 計チャンネル数8から 設定されている。

また, せん断方向の変位・荷重の計測は, データ ロガーによって静的に計測する。

## 2.5 自動制御アルゴリズム

図 - 4に,本システムの自動制御アルゴリズム を示す。図 - 4から知るように,本自動制御には 一般的なPID制御理論を導入しており,亀裂面の 隅角点ごとの垂直荷重 - 亀裂幅関係において, このアルゴリズムが,他とは独立に成立してい ると仮定されている。即ち,4本のマイクロ ジャッキの動作は互いに連動しない。

PID 制御では, 偏差 *e*(*t*) と出力値 *U*(*t*) との関係 に, (1) 式の伝達関数が仮定される。

$$U(t) = K_P \cdot e(t) + K_I \cdot \int e(t)dt + K_D \cdot \frac{d}{dt}e(t)$$
(1)

 $K_p$ :比例ゲイン  $K_j$ :積分ゲイン  $K_D$ :微分ゲイン 上(1)式は, ラプラス変換され(2)式を得る。

$$U(s) = K_{P} \cdot \left[1 + \frac{1}{T_{I} \cdot s} + T_{D} \cdot s\right] \cdot e(s)$$
<sup>(2)</sup>

 $T_{r}$ :積分時間  $T_{p}$ :微分時間

この (2) 式中の *K<sub>p</sub>*, *T<sub>i</sub>*, *T<sub>D</sub>*の3 つのパラメータ を適切に調整し,対象系の最適制御が可能とな る。

これらの3種のゲインの調整には、対象系の質量 や剛性等からシステム特性を同定し、それらの値か ら適切なゲインが設定されている。しかし本システ ムは、その構成要素が複雑であるばかりではなく、コ ンクリート亀裂面の凹凸が不均一であるがため に,システム特性を直接同定することは難しく, 種々の設定条件下で実験し,最適なゲインを選 定することにした。これらのパラメータ設定に ついては,次節に記述する。

# 3. コンクリートせん断亀裂の最適制御実験 手法の検討

著者らの知る限りでは,コンクリートせん断 亀裂実験において,手動実験結果と自動制御実 験のそれが,比較された例はないようである。手 動実験では,亀裂面の位置制御を人為作業に よって調整せざるを得ず,不可避のヒューマンエ ラーより 実験結果が少なからぬ影響を及ぼすこと が考えられる。

本論文では,コンクリートせん断亀裂の試験体 を作成し,実際に亀裂幅一定下での「手動実験」 と「比例ゲインKpを変えた自動制御実験」を執り行 い制御方法の相違と比例ゲインKpが実験結果に与 える影響について考察を加えることとする。

## 3.1 最適制御法確立のための実験プログラム

コンクリートせん断亀裂の応力伝達機構を解 明する「最適制御実験手法」を確立するには,比

表-4 自動計測・制御機器の性能一覧



例ゲイン $K_p$ ,積分時間 $T_1$ ,微分時間 $T_D$ の3種の パラメータの適切な調整が重要であることは先 に述べた。これには,厖大な組合わせが考えられ るが,本論文においては,研究の緒として比例動 作のみに限定し, $K_p$ =10, $K_p$ =40と2段階を設け, 亀裂幅 =0.5mmの1サイクル正負交番加力を与 えることにする。

上記の本実験シリーズは表-5のようであり,そのコンクリート材料性状は表-6のとおりである。

本実験の加力手順は,まず4本のマイクロジャッ キが純引張に近い状態となるように自動制御操作し, これを亀裂幅 が0.5mmとなるまで加力し続け,そ の後,手動制御と自動制御とに分けて,せん断力を 漸増・漸減する。

## 3.2 実験結果の比較・考察

図 - 5 にコンクリートせん断亀裂面の亀裂幅の 推移を,図 - 6 にせん断亀裂面の応力とせん断変 位の推移を示すが,両図には,参考として,早強 セメントを用いて同諸元寸法で製作し,圧縮強 度がほぼ同等であった,他のシリーズ試験体の亀 裂幅 =0.8mmによる手動実験結果を図(b)に併記 してある。

図 - 5より,2つの手動制御結果においは,亀 裂幅 0.5mm を保持できず,載荷途中で乖離を見 せ,更には自動制御下の比例ゲイン $K_p=10$ の加力 でも,亀裂幅に僅かな乱れが惹起されている。こ の比例ゲイン $K_p$ を40まで増大させ,変位拘束速 度を大きく取ると,亀裂幅は十分な変動範囲に 収束していることが分かる。即ち,手動制御で は,せん断亀裂面の亀裂幅を3次元拘束するこ とは不可能なようである。

次に,せん断亀裂面の応力状況を図6に観察 すると,「せん断応力 - せん断変位 」および 「垂直応力 - せん断 」の資料から,手動制御 加力はもとより,K<sub>p</sub>=10の自動制御加力でも,応 力曲線が局所で振動してしまい,応力性状の定 量に到らぬようである。しかし,亀裂幅が先に安 定したK<sub>p</sub>=40の比例ゲインでは, - 関係と -

関係とも安定した結果が得られている。 本実験結果より,比例ゲインK<sub>p</sub>を40ほどに取 ると,せん断亀裂の応力伝達機構における基本 4量(せん断変位,亀裂幅,せん断応力, 垂直応力)が同定されるようであるが,比例ゲ インをこれ以上に大きくした場合については, 今後精査すべき重要な事項と考えられる。

#### 4. まとめ

コンクリート亀裂面の凹凸は激しく、そのせん断 亀裂接触における僅かな亀裂幅の齟齬から、伝達応 力場は激変することが予想される。この複雑な

表 - 5 試験体と比例ゲイン K, の設定値の一覧

| 試験体名    | 制御方法 | K <sub>P</sub> | TI | T <sub>D</sub> |
|---------|------|----------------|----|----------------|
| CW05MNU | 手動   |                | _  |                |
| CW05P10 | 自動   | 10             |    |                |
| CW05P40 | 自動   | 40             | _  | _              |

表-6 コンクリートの材料性状

| 最大骨材寸法  | 圧縮強度       | 割裂強度       |
|---------|------------|------------|
| 20 [mm] | 39.2 [MPa] | 5.05 [MPa] |



応力場を,従来,単軸もしくは2軸加力によって 拘束してきたが,このシステムによる本実験結 果から,2軸加力では亀裂面の3次元拘束が,ほ とんど不可能なことは明らかである。

本論文では,4軸加力による独自の自動制御 システムを開発し,せん断応力増減下の亀裂幅 の3次元拘束をはじめて実現可能なことを示し た。これまで多用されてきた手動実験法と自動 制御実験法を,亀裂幅一定のせん断加力に適用 し,その両者の結果の比較から,制御パラメータ の一つである「比例ゲインK<sub>p</sub>」の影響について若 干の検討を行ったが,得られた結果は以下のようで ある。

コンクリート亀裂面の3次元拘束を安定させる
 には,手動制御はおろか,比例ゲインK<sub>p</sub>が小さ
 い自動P制御でも不可能である。

2)所定の亀裂幅が保持されない場合には,せん断応力-せん断変位と垂直応力-せん断応力の各曲線が振動し,その定量化は望めない。

3) *K<sub>p</sub>*を40まで大きくすると, 亀裂幅は保持され, せん断応力- せん断変位と垂直応力- せん断応力が高精度に定量化できる。

現在,比例ゲイン K<sub>p</sub>を大きくした場合や,積 分動作 I,微分動作 Dをも取入れ,亀裂幅を0.1mm ~1.0mm に設定した自動制御実験を遂行中であ り,得られる結果の検証から,せん断亀裂の応力 伝達機構を解明する「最適制御実験手法」を確立 してゆきたいと考えている。

#### 謝 辞

本研究において,北海道職業能力開発大学校・ 制御技術科・成田忠夫助教授には,貴重な助言, 並びに多大なるご協力を頂きました。ここに感 謝の意を表します。

## 参考文献

 Millard,S.G. and Johnson,R.P. : Shear Transfer across Cracks in Reinforced Concrete due to Aggregate Interlock and DowelAction, M. of Concrete Research, Vol.36, No.126, pp.123~137,1984.3

2) 李宝禄,前川宏一: 接触面密度関数に基づくコンクリー





トひびわれ面の応力伝達構成式, コンクリート工学 ,Vol.26,No.1,pp.123~137,1988.1

- 3) 佐々木仁,寺岡勝:人工軽量骨材コンクリートのひび割れ 面における応力伝達構成式,日本建築学会構造系論文集, 第550号,pp.111~118,2001.12
- 4) 篠原保二, 川道克祥, 石飛幸子: コンクリートのひび割れ 面における変位制御繰返しせん断挙動日本建築学会構造 系論文集, 第548号, pp. 101~106, 2001.10
- 5) 長谷川了一, 香取慶一, 篠原保二, 林靜雄: 100N/mm2 を超 える高強度コンクリートのひび割れ面におけるせん断挙 動に関する研究,日本コンクリート工学年次論文集, Vol26, No2. pp. 91~96, 2004,
- Bujadham Buja: The Universal Model for Transfer across Crack in oncrete, Department of Civil Engineering, The Graduate School of The University of Tokyo, March 1991.