論文 コンクリート破壊エネルギーG_F算出方法に関する研究

高谷 哲*1・荒木 弘祐*2・服部 篤史*3・宮川 豊章*4

要旨:コンクリートの破壊エネルギーである G_Fの算出方法は CEB や土木学会などでも規定 されているが,その精度向上には課題を残している。G_F は単位面積当たりのひび割れを進展 させるために必要なエネルギーであると考えられる。そこで,ひび割れ進展エネルギーをひ び割れ面積で除すことにより G_F を算出する手法を検討した。また,鉄筋腐食によるコンク リート内部ひび割れの進展を予測する手法への G_F の応用を試みた。その結果,ひび割れ進 展エネルギーをひび割れ面積で除すことにより G_Fを算出できること,G_Fを用いて鉄筋腐食 ひび割れの予測ができる可能性があることが明らかになった。

キーワード:G_F,鉄筋腐食,膨張圧,エネルギー

1. はじめに

コンクリート中に塩化物イオンが浸透したり, 中性化によりコンクリートの pH が低下したり すると内部の鉄筋が腐食する。内部鉄筋の腐食 初期における腐食速度や劣化予測に対しては多 くの研究が進められ、メカニズムも明らかにな りつつあるが,加速期~劣化期にかけてのメカ ニズムは未だ不明確な部分が多い。鉄筋腐食に よるひび割れの発生は劣化進行の加速や美観・ 景観の点で問題となるだけでなく,ひび割れが 進展し、かぶりコンクリートが剥落すると第三 者被害が生じる恐れもある。したがって,ひび 割れの発生・進展の予測の精度向上を図る必要 がある。そこで本研究では,鉄筋腐食により生 じる膨張圧がかぶりコンクリートへのひび割れ を引き起こし, 剥落を生じさせるまでのメカニ ズムをモデル化した実験を行い、ひび割れ面積 およびひび割れ進展エネルギーを求めることに より,コンクリートの破壊特性の一つであるコ ンクリート破壊エネルギーG_Fを算出する手法の 開発・提案を行うことを目的として実験を行っ た。また,G_Fを用いてひび割れ進展を予測する

*1 京都大学 大学院工学研究科 (正会員)
*2 西日本旅客鉄道 施設部 (正会員)
*3 京都大学 大学院工学研究科 助教授 (正会員)
*4 京都大学 大学院工学研究科 教授 (正会員)

手法や鉄筋腐食膨張圧により内部に発生する応 力を求める手法について検討した。

2. 既往の研究

筆者らは供試体に挿入した弾性体を人工的に 膨張させることにより鉄筋腐食を模擬する実験 を行い,鉄筋腐食により発生する腐食膨張圧と 模擬鉄筋の膨張した半径と元半径の差(以下, 半径変化量)の相関性を報告している^{3),4),5}。 この実験では,図-1のように,26mm,長さ 300mmの円柱空洞を有した150×150×400(mm) のコンクリート角柱の内部に26mm,長さ 200mmの弾性体を挿入した供試体を作製し,か ぶりを変化させて実験を行った。弾性体は摩擦

を軽減するために,表面に十分な油を塗布し, あらかじめ供試体に設けていた円柱空洞内に挿 入した。弾性体を完全に挿入した後,実験を開 始し,実験では,図-2のような方法で弾性体 に鉛直変位を加え,この変位と鉛直荷重を測定 した。得られた鉛直変位と鉛直荷重の関係の代 表例を図-3に示す。この鉛直変位と鉛直荷重 は,下記の式⁴⁾を用いて,円柱空洞内壁に作用 する圧力 p_i(以下,内圧)と半径変化量 dr に変 換することができる。

$$p_i = \frac{\nu E}{\nu - 1} \left(\frac{dL}{L} - \frac{P}{Er_1^2 \pi} \right) \tag{1}$$

$$dr = \frac{\mathbf{v} \cdot dL \cdot r_1}{L} \tag{2}$$

ただし,P:鉛直荷重(kN),dL:鉛直変位, E:弾性体のヤング係数(N/mm²), :弾性体 のポアソン比,L:弾性体元長(mm),r₁:弾性 体元半径(mm)とする。

実験結果から,かぶりが大きくなるにつれて, 線形の関係で最大内圧が大きくなることや,最 大内圧を発生させる半径変化量がかぶりに因ら ず一定であること,また厚肉円筒理論⁶⁾と低減 係数を用いて最大内圧を推定することが可能で あることが明らかとなった。

3. エネルギー算出理論

図 - 3 に示す鉛直変位と鉛直荷重の関係から, 系全体に与えられたエネルギー(U:kN・mm) は面積積分で表され,下記の式で計算できる。

$$U = \sum_{j} \frac{\left(dL_{j+1} - dL_{j}\right)\left(P_{j} + P_{j+1}\right)}{2}$$
(3)

.

系全体に与えられたエネルギーは弾性体に蓄 積されたエネルギー(U_E)と,コンクリートに 蓄積されるエネルギー(U_C)に分割されると考 えられる。 U_E と U_C は式(1),(2)を用いて,下 記の式で表される。

$$U_E = \sum_j \frac{E}{2L} \cdot \Delta A_{1j} \cdot \Delta dL_j^2 \cdot 10^{-3} \qquad (4)$$

図-2 実験方法

図 - 3 鉛直変位 - 鉛直荷重関係

図 - 4 エネルギー算出結果

$$U_{C} = \sum_{j} \frac{1}{2} \left(p_{ij} + p_{ij+1} \right) \cdot \Delta dr_{j} \cdot u_{j}$$
 (5)

$$\Delta A_{1j} = A_{1j+1} - A_{1j} \tag{6}$$

$$A_{1j} = \pi \cdot \left(r_1 + dr_j \right)^2 \tag{7}$$

$$\Delta dL_j = dL_{j+1} - dL_j \tag{8}$$

$$\Delta dr_j = dr_{j+1} - dr_j \tag{9}$$

$$u_{j} = 2\pi (r_{1} + dr_{j}) (L - dL_{j})$$
(10)

ただし,A_{1i}:弾性体断面積(mm²),u_i:弾性 体周面積 (mm²) とする。

図 - 3 に示される実験結果を上記の算出手法 で整理したものを図 - 4 に示す。図 - 4を見る と、半径変化量が小さな領域では、系全体に与 えられたエネルギーと弾性体およびコンクリー トに蓄積されるエネルギーの和が一致している ことがわかるが、半径変化量が大きくなると、 この二つが乖離している。ここで,UとU_E+U_C の差をUsとする。図 - 1,2で示した実験では, 最終的に供試体は表面にひび割れを生じて破壊 することから,このUsの主たる部分はコンクリ ートのひび割れにより消費・消散されるエネル ギーであると推測される。

CEB では単位面積あたりのひび割れ進展に必 要なエネルギーを G_Fと規定している¹⁾。本論に おける Usは GFと相関があると考えられ, Usを ひび割れ面積で除すことにより G_Fを求めること ができる可能性がある。このことから,図-1 の実験供試体を再度作製し,同様の実験方法に より,エネルギーの関係図とひび割れ面積を得 て本論における G_Fを算出し,土木学会や CEB により規定されている方法によって求めた G_Fと の比較を行うことにした。

4. 実験概要

4.1 載荷方法

作製した供試体寸法は上述と同様(図-1) とした。筆者らの実験では,ひび割れ発生パタ ーンや,鉛直荷重・鉛直変位の関係がかぶり 30mm の場合に最も結果のばらつきが小さかっ たことから,本研究ではかぶりを 30mm に統一 した。また,円柱空洞直径は D19 の公称直径 (19.1mm)を模擬し 20mm とした。実験は前回 と同様の方法で行い,弾性体の膨張は鉛直変位 で制御し,その速度は0.20mm/20secとした。測 定項目は鉛直荷重と鉛直変位とした。鉛直荷重 が最大となった時点で円柱空洞からコンクリー ト表面にひび割れが貫通することから,載荷は 最大荷重が得られた時点で終了した。なお,本 実験で作製したコンクリートの力学特性は、圧 縮強度: 38.5N/mm², 割裂引張強度: 3.9N/mm², 弾性係数: 3.81×10⁴N/mm², ポアソン比: 0.18 であった。

4.2 ひび割れ面積測定方法

載荷終了後,発生したひび割れの閉塞を防ぐ ため,鉛直変位を保持し,染料を注入した。染 料は円柱空洞上部から半径変化量により生じた 間隙を通じて重力注入した。表面ひび割れから の流出により染料が十分に浸透したことを確認 した後,染料注入をやめ,供試体をコンクリー トカッターで横方向に 50mm 間隔で切断した。 写真 - 1 にスライス片の代表例を示す。 スライス 片の番号は図 - 5のように設けた。その後,各 スライス片の両面

のひび割れを 6~7 分割して直線を用 いて近似し 各直線 長さの合計をスラ イス片面のひび割 れ長さとした。スラ イスのひび割れ面 積は 両面のひび割 れ長さの平均: mm)×(スライス 片の厚さ:50mm)

図 - 5 スライス片番号

写真 トレース図 写真 - 1 染料浸透の様子

とした。ただし,最下面のスライス片について は,厚さ 50mm に切断することが困難であった ため,ひび割れ深さを測定し,(ひび割れ長さ: mm) × (ひび割れ深さ:mm)をひび割れ面積 (mm²)とした。スライス片2と7では,ひび割 れ深さは,スライス片側面の染料浸透長さとし た。

- 実験結果・考察
- 5.1 エネルギー算出結果

弾性体のヤング係数:1.39kN/mm²,ポアソン 比:0.49,元長:200mm,元半径:10mm,およ び本実験から得られた鉛直荷重と鉛直変位を式 (1)~式(10)に代入し,エネルギーを算出し た結果,図-6のようになった。

5.2 ひび割れ面積算出結果

供試体を切断した後のスライス片における染料浸透を確認したところ,可視ひび割れには十分な浸透が確認され,不可視ひび割れにも染料の浸透が見られたことから,ひび割れへの染料の浸透には問題がなかったと判断し,着色部の長さをひび割れ長さとした(写真 - 1)。測定されたひび割れ長さ(mm)および推定したひび割れ面積(mm²)を表 - 1に示す。

5.3 GF算出結果

(1)本実験における G_Fの算出結果

算出された最大荷重時のエネルギーU, U_E+ U_Cおよびひび割れ面積から G_F(N/m)を算出し た結果を表 - 2に示す。本実験手法により得ら れた G_Fの平均:78.6,標準偏差:19.6であった。

なお, CEB および土木学会ではそれぞれ以下 の式により G_Fを算出しているので,本実験結果 との比較検討を行った。

(2) CEB による算出方法¹⁾

$$G_F = G_{F0} \{ (f_{ck} + \Delta f) / f_{cm0} \}^{0.7}$$
(11)

ここで,fck:設計圧縮強度(N/mm²),f:8 N/mm²,f_{cm0}:10 N/mm²とする。また,G_{F0}は最 大骨材寸法に依存する係数で最大骨材寸法 16mmの時G_{F0}:0.030である。

図 - 6 本実験におけるエネルギー算出結果

表 - 1 ひび割れ面積算出結果

	供試体番号(ひび割れ長さ)					
スライス片	1	2	3	4	5	
1上	0	0	0	0	0	
1下	0	0	0	0	0	
2上	0	0	0	0	0	
2下	182	163	120	138	147	
3上	204	172	130	165	162	
3下	196	132	184	171	165	
4上	204	135	180	164	160	
4下	210	141	198	149	180	
5上	191	136	209	146	175	
5下	190	113	163	132	149	
6上	219	123	158	134	145	
6下	119	103	140	127	139	
7上	119	116	135	101	95	
7下	0	0	0	0	0	
面積	45136	34334	42450	35372	38685	

単位 長さ:mm,面積:mm²

CEB の方法により算出した結果を表 - 2 に示 す。

(3) 土木学会による算出方法²⁾

$$G_F = 10(d max)^{\frac{1}{3}} \cdot f_{ck}^{\prime \frac{1}{3}}$$
(12)

ここで,dmax (mm):骨材最大寸法,f²_{ck}: 設計圧縮強度 (N/mm²)とする。

土木学会の方法により算出した結果を表 - 2 に示す。

5.4 考察

本実験における G_F算出結果と CEB および土 木学会の方法により算出した G_Fを比較すると, 概ね整合性があると考えられる。しかし,標準 偏差を考えると,精度は十分ではない。この理 由として,供試体別のコンクリート強度のばら つきによる誤差と測定による誤差の影響が考え られる。測定誤差の中で最も大きいと考えられ るのが,ひび割れ面積測定における誤差である。 本実験手法においては、各スライス断面上下(例 えばスライス片 4 下とスライス片 5 上)のひび 割れ長さは一致しなければならないが,表-1 を見ると切断面上下においてひび割れ長さが一 致していないものが多い。そこで,ひび割れ面 積が最大となるように測定ひび割れ長さを選択 したもの (例えばスライス片 2下: 182mm とス ライス片 3 上: 204mm の場合, 3 上を最長ひび 割れ長さと設定)とその逆(最小面積)を算出 し, それぞれ $G_F(\min)$ と $G_F(\max)$ として実 験結果と比較することにした。表 - 3 にその結 果を示す。ひび割れ面積測定の最大・最小値よ りそれぞれ求めた G_F は, 平均値から求めた G_F と最大 5.5%, 平均 4.1%の差があった。

算出した G_Fのうち,最も平均値との差が大き い供試体 No.2の値の平均値との差は46%であり, この内ひび割れ面積測定による誤差が3.5%であ るとしても,他の要因による誤差が42.5%含ま れている。図-6を見ると,供試体 No.2の最大 荷重時の半径変化量が他の供試体供試体よりも 大きいことが分かる。このことから,No.2 は供 試体ごとの誤差が顕著に現われたのものであり,

表 - 2 G_F算出結果

	供試体番号					
	1	1 2		4	5	
U	30.68	33.15	33.33	31.72	26.87	
UE+UC	27.94	29.3	30	29.01	24.47	
US	2.74	3.95	3.34	2.71	2.40	
面積	45136	34394	42450	35372	38685	
GF	60.8	115	78.5	76.6	62.1	
CEBの規定により算出したGF			77.1			
土木学会の規定により算出したGF			71.1			

単位 $U_S: kN \cdot mm$, 面積: mm^2 , $G_F: N/m$

表 - 3 面積測定による G_Fの誤差

	供試体番号					
	1	2	3	4	5	
US	2.74	3.95	3.34	2.71	2.40	
最大面積	47086	35394	43400	36919	40862	
最小面積	43186	33277	41575	33747	36860	
GF(min)	58.2	112	76.9	73.4	58.7	
GF(max)	63.4	119	80.3	80.3	65.1	
GF	60.8	115	78.5	76.6	62.1	
誤差	4.3	3.5	2.3	4.8	5.5	

単位 U:kN・mm,面積:mm²,G_F:N/m,誤差:%

その原因はコンクリートの圧縮強度や応力 - ひ ずみ関係等の物性値によるものと推定される。 供試体 No.2 を除いた残りの G_F算出結果の平均 は 69.5 であった。この時の誤差は約 10%となる。 CEB¹⁾では最大 30%程度, 土木学会⁷⁾では最大 約 100%の誤差があることや,ひび割れ面積測定 誤差を考慮すると,よい精度で G_Fを算出できて いると考えられる。

本実験手法を用いた G_F算出方法の特徴は,算 出された G_Fから,腐食ひび割れ面積を算出でき ることである。本論における U_S はかぶりやコン クリート強度,円柱空洞径や膨張圧導入長さに よって異なると考えられる。そこで,2章で説明 している 26 の実験の結果からも U_Sを算出し た。これを表 - 4 に示す。表 - 4 の U_Sを算出し た。これを表 - 4 に示す。表 - 4 の U_Sをかぶり ごとにグラフ化すると図 - 7 が得られた。この 図から,かぶりが U_S に影響し,U_S はかぶりを パラメータとして指数関数で近似できることが 分かった。G_F はかぶりによらないので,算出し た U_Sを本論で得られた G_Fで除し,ひび割れ面 積を算出したものも表 - 4 に示す。既報では, 半径変化量と内圧の関係を得ることを主眼とし, 実験を行ったため,ひび割れ面積のデータが存

	供試体番号(US算出結果)					(日(設定値)	而珸
かぶり	1	2	3	4	00+13	57(設定道)	山作具
10	0.82	0.68	0.50	0.68	0.67	78.6	8534
15	0.88	0.89	0.65	0.72	0.79	78.6	9987
20	0.74	1.11	0.73	1.57	1.04	78.6	13200
25	1.36	2.32	0.68	1.56	1.48	78.6	18830
30	2.00	1.73	1.77	2.33	1.96	78.6	24905
35	2.75	3.75	2.13	2.04	2.67	78.6	33938

表 - 4 かぶりによる U_s, ひび割れ面積の違い

単位 かぶり:mm, U_S: kN・mm, G_F: N/m, 面積:mm²

在しないのが残念であるが,今後は,かぶりや コンクリート強度,円柱空洞径や膨張圧導入長 さをパラメータとして,ひび割れ進展パターン の把握に努め,G_Fを用いて腐食ひび割れの進展 を推定する手法の開発に取り組む予定である。

6. 結論

- (1) ひび割れにより消費されるエネルギー
 (U_s)をひび割れ面積で除すことにより
 G_Fを算出することができる。
- (2) 本実験手法により得られた G_Fは CEB や
 土木学会の規定で算出した G_Fと概ね整
 合性があると考えられる。ひび割れ面積
 測定誤差から求めた本実験手法による
 G_Fの算出誤差は4%程度であった。
- (3) 今後,かぶりやコンクリート強度ごとの ひび割れ進展パターンを明確にできれ ば,本実験手法により得られた G_Fを用 いて,鉄筋腐食膨張圧により内部に発生 するひび割れの進展予測を行うことが できると考えられる。

参考文献

- 1) CEB: CEB-FIP MODEL CODE 1990, 1993, pp36-37
- 2) 土木学会 コンクリート委員会:2002 年制 定コンクリート標準示方書 構造性能照査 編,丸善,第3版発行,pp.27
- 3) 高谷哲,荒木弘祐,服部篤史,宮川豊章:弾

性体を用いた鉄筋腐食膨張圧モデル化の実 験的検証,土木学会年次講演会,2004,5-275

- 4) 荒木弘祐,高谷哲,服部篤史,宮川豊章:コ
 ンクリート中の鉄筋腐食膨張圧のモデル化, 土木学会年次講演会,2004,5-277
- 5) 荒木弘祐,高谷哲,服部篤史,宮川豊章:コ ンクリート中の鉄筋腐食膨張圧モデル化と 実験・解析手法,コンクリート構造物の補修, 補強,アップグレード論文報告集,日本材料 学会,2004,pp.25-32
- 6) 清水篤磨:材料力学,共立出版社,1963
- 7) 土木学会:2002 年版 コンクリート標準示方書 改訂資料, pp.10