論文 偏心鉄筋コンクリート構造物の動的外力分布による応答推定手法

壁谷澤 寿一^{*1}•壁谷澤 寿海^{*2}

要旨: 偏心構造物の応答は,並進変形と層回転変形の重ね合わせによって理解できるが,2 次モードの影響が大きい場合,1自由度等価線形化による非線形応答の推定は難しくなる。 この影響の大小は各次モードの有効質量比によって判定可能であるが,本研究では有効質量 比が動的および静的載荷時にどのように推移しているかを検討し,構造物の条件に基づく一 般的な傾向があることを明らかにした。この性質を利用して,動的応答モードに基づいた新 しい等価線形手法を提案し,その推定精度を既往の手法による場合と比較した。 **キーワード**:等価線形応答,有効質量比,モード解析,MPA,NPA

1. はじめに

偏心構造物の応答では構造物の形状によって 最低でも並進が支配的なモード形と回転が支配 的なモード形の2つのモード形を考慮する必要 がある。いずれかのモード形が支配的であれば1 次モードによる縮約でも非線形地震応答はある 程度推定可能であるが、2次モードも支配的にな る場合は精度に限界がある。そこで例えば限界 耐力設計法では構造・平面上の制約を設けて、 このような場合は適用範囲外としている。本研 究では、多層偏心 RC 構造物の応答を推定する手 法として提唱されている Nonlinear Pushover Analysis と骨組解析した動的応答結果を比較す るとともに、上記の範囲外にも適用可能な等価 線形化手法を提案してその妥当性を検討する。

2. 既往の応答推定手法

一般的に等価線形化手法では,等価減衰 h_eと 等価周期 T_eを有する縮約1自由度系モデルの応 答値を用いて構造物の非線形応答の推定する。1 自由度等価線形化手法において高次モードの影 響を考慮する手法として主に以下の2つが挙げ られる。

1) Modal Pushover Analysis (MPA)

2) Nonlinear Pushover Analysis (NPA)

1)は各モード外力形で静的漸増載荷解析し,各 モードについて等価減衰と等価周期から得られ る応答値を刺激係数で重み付けして足し合わせ る手法である。これに対して2)は各モードの外 力分布形に刺激係数を重み付けして足し合わせ ((1)(2)式),この1+2次モード外力形{F}で静的 漸増載荷解析し,その等価減衰と等価周期から 応答推定値を求める手法である。多層偏心 RC 構 造物の変形も同様に NPA によって応答を推定す る手法が提唱されている^{例えば1)}。

$$\{F\} = [M] \sum_{i=1}^{2} \beta_{i} \{u\}_{i} = [M] \sum_{i=1}^{2} \beta_{i} (\{\phi_{dxi}\} \{\phi_{\theta i}\})^{T}$$
(1)

$$\beta_{i} = \frac{\left(\left\{ \phi_{dxi} \right\} \left\{ \phi_{\theta i} \right\} \right) \left[M \right] \left\{ \alpha_{j} \right\}}{\left(\left\{ \phi_{dxi} \right\} \left\{ \phi_{\theta i} \right\} \right) \left[M \right] \left(\left\{ \phi_{dxi} \right\} \left\{ \phi_{\theta i} \right\} \right)^{T}}$$

$$(2)$$

{�_{dxi}}; 第 i 次モードの X 方向並進変形成分

- { \$\phi_{\text{theta}}\$}: 第 i 次モードの層回転変形成分
- β_i: 第i次モードの刺激係数

{α}:(1...,0···)^T: 加速度作用方向ベクトル

3. 有効質量比

一般に第 i 次モードの応答に与える影響の大きさを表す指標として有効質量比M_iが用いられ

*1	東京大学	工学系研究科建築学専攻	(正会員)
*2	東京大学	地震研究所教授	(正会員)

る。第 i 次有効質量比は式(3)の形で表される値 であり,各モード縮約系にかかる加速度あたり の外力の大きさを示している。

 $M_{i} = (\beta_{i} \{u\}_{i} [M] \{\alpha\}) / M$ (3) M : 構造物の総質量 $M_{i}: i次有効質量比$

偏心構造物の線形応答で一次モードの挙動が ほぼ支配的になる一次有効質量比の範囲が検討 されており²⁾,これにもとづいて,限界耐力設計 法の多層構造物での適用範囲は式(3)による1次 有効質量比 M₁が 0.75 以上の場合に限定されて いる³⁾。また,非線形応答では偏心構造物の一次 有効質量比が増加し,非線形化が進むにつれて 一次モードが顕著になるが,単層一軸捩れ構造 物を対象にした既往の研究⁴⁾では,有効質量比 0.6以上の場合には1次モード外力とモード直和 外力の静的漸増載荷解析の併用による応答評価 が可能であるとしている。

4. 解析方法

本研究では偏心 RC 構造物の部材レベルの非線 形地震応答解析を行い,動的な捩れ応答の支配 的なモード形について有効質量比を指標にして 検討する。また,NPA を基本にした静的漸増解析 によってこのモード形を特定することを試みる。

非線形静的漸増載荷解析および地震応答解析 は CANNY99⁵⁾を用いた。柱梁は One - Component Model を用いてモデル化し,耐震壁は TVLE モ デル⁶⁾を用いた。各部材の強度および剛性低下率 は日本建築学会に基づく算定式⁷⁾を用いた。なお, 筆者らは 6 層偏心鉄筋コンクリート建物の振動 実験を行い,実験結果および実験の解析結果⁸⁾ を報告しているが,本解析手法は柱が限界変形 に達して耐力劣化が生じる直前の大変形域まで 精度よく応答を模擬しうることを検証している。 入力地震動は 1995 年兵庫県南部地震神戸海洋気 象台(KOBE),1985 年チリ地震(CHILE)の 2 波 と日本建築センターの模擬波 (BCJL2)を係数倍 して用いた。

5. 動的応答の定モード形抽出法

以下の検討では,動的応答時の支配的なモー ド形を応答波形の時刻歴 f(t)に対して一定のモー ド形 {X}と時刻関数 q(t)によって近似する((4) 式)。質量マトリックス[m]に関して直交性をも つ基準モードとして(5)(6)(7)式によって抽出 することができる⁹⁾。基準モード形は,(5)式に よる時刻歴応答との差の[m]に関する2乗累積和 Eが最小となるモードとすると,モード形{X}は 式(7)に示される固有値問題の最大固有値λに 対応する固有ベクトル{u}_{1d}(1次)として抽出可 能になる。また,2次以上の基準モードも応答時 刻歴から(1次)基準モードを取り除いた成分 に対して同様の手順によって求める。

- $f(t) \sim \{X\} q(t) \tag{4}$
- $E = \int_{t}^{t_1} [f(t) \{X\}q(t)\}]^T [m][f(t) \{X\}q(t)\}] dt \quad (5)$
- $[R] = \int_{a}^{t_1} \{f(t)\} \{f(t)\}^T dt$ (6)
- $([m][R][m])\{u\}_{1d} = \lambda_1[m]\{u\}_{1d}$ (7)

6. 解析対象試験体

解析対象は 1/3 スケール 6 層 RC 一軸偏心 RC 構造物 12 種類とした。平面は図-1に示す6種 類で,壁厚を2種類(80mm の Sp a シリーズお よび 40mm の Sp b シリーズ)として,耐震壁構 面の剛性,並進変形と回転変形の割合を変化さ せている。入力方向は X 方向1方向である。表 -1に部材断面リストを示す。各部材断面,各 階重量は震動実験の解析と同様に定めた。

表-1 解析対象試験体の部材断面リスト

柱	В×D	200 × 200(mm)	梁	В×D	150 × 250(mm)	
	主筋	12-D10		主筋	2-D10	
	横補強筋	D4@50		横補強筋	D6@75	
			壁梁	В×D	240 × 250(mm)	
壁	壁厚	80 or 40 (mm)		主筋	4-D10	
	縦横筋	D6@10 ダブル		横補強筋	D6@75	

各構造物の偏心に関わる諸元の計算値を表-2に示す。本稿ではこれらの解析対象試験体の 中で,1次有効質量比の小さな試験体,すなわち, Sp4a,4b,5a,5bについて議論する。これらは1次 モードのみによる応答推定が難しい解析対象で あり,その他の場合の捩れ応答は1次モードを 主体にして理解しやすい傾向があり,同様の結 果が得られることを確認している。

	T1(s)	T2(s)	M1	M2	Re1	Re2	BS 係数
Sp1a	0.195	0.076	0.648	0.066	0.951	0.307	0.29
Sp1b	0.197	0.084	0.664	0.080	0.577	0.220	0.31
Sp2a	0.158	0.113	0.627	0.106	0.316	0.097	0.42
Sp2b	0.168	0.117	0.706	0.055	0.176	0.066	0.47
Sp3a	0.134	0.087	0.608	0.107	0.352	0.121	0.46
Sp3b	0.147	0.097	0.641	0.099	0.261	0.093	0.46
Sp4a	0.185	0.131	0.365	0.366	0.384	0.097	0.14
Sp4b	0.188	0.142	0.450	0.304	0.215	0.066	0.19
Sp5a	0.178	0.109	0.261	0.503	0.396	0.134	0.15
Sp5b	0.179	0.128	0.302	0.491	0.230	0.095	0.16
Sp6a	0.115	0.078	0.039	0.699	0.208	0.058	1.02
Sp6b	0.126	0.091	0.048	0.628	0.148	0.049	1.35

表-2 解析対象試験体の諸元

7. 解析結果

構造物の塑性化の程度が異なる場合の捩れ応 答を一般的に検討するために, 原波の定数倍 (BCJL2は0.5倍刻み, CHILE, KOBEは0.25倍 刻み)で入力地震動の大きさを変化させて解析 し,結果を整理した。静的漸増解析では異なる 2つの外力モード形(1次;1次と2次の重ね合 せ)による結果で比較検討した。

(4) 式から(7) 式により動的解析結果から抽出 されたモード形の1次(基準)モード有効質量 比M₁とこのモード形で縮約した最大応答変形 の関係を図-2に破線と△,□,○で示した。 同様に上記の異なる2つの外力モードに対する 静的解析結果で得られた変形モードに対応する 有効質量比の推移を実線と点線で示した。

動的応答の1次有効質量比は概ね2つの外力 モード形によるNPAの有効質量比の中間にあり, 1次モード外力から徐々に重ね合わせの外力に よる解析値に漸近し,ややこれを上回る値で定 常化している。これらの傾向はいずれの試験体 でも共通しているが,弾性1次モード形の有効 質量比が大きいSpla, 1b, 2a, 2b, 3a, 3b などでは 1次モードと1+2次モード外力形による静的解 析結果の差は小さく,外力モード形はあまり影響しない。

以上の結果は試験体が塑性化すると動的応答 から抽出された変形モードが弾性1次モードか ら1+2次モードに近い形状に遷移する一般的な 傾向を示している。また,遷移する変形区間は 地震波によらずほぼ一定である。

動的応答において1次有効質量比が変化し始 める変形は代表点の荷重変形関係における降伏 変形付近であり、これは非線形化によってモー ド形の直交性が崩れるためであると考えられる。 これに対して大きな非線形領域では、動的応答 の変形モードは弾性1+2次モード形を重ねあわ せた外力モード形に対応した分布になっている。 これは弾性2次モードに対応する成分が1次モ ードと同じフェイズのモード形として1次モー ドに重なって抽出されていると推定される。

同様の方法で動的解析結果から抽出された 2 次モード成分に対応する有効質量比 M_2 の最大 応答変形レベル(1次)に対する推移を図-3 に示す。2次の有効質量比 M_2 は徐々に減少し、0 に漸近している。すなわち、動的な応答は抽出 された 1 次基準モード外力で縮約した系で推定 が可能になることを示唆している。

8. 提案する応答推定手法

以上の非線形捩れ応答を静的漸増解析(MPA, NPA)を基本にして推定する方法を試みる。通常 静的解析では一定の外力分布形を仮定するが, 前述したように動的解析から抽出した1次モー ドは変形分布も外力分布も応答変形レベルに依 存して一定ではない。したがって,どの変形レ ベルにも適用可能な一義的な外力分布を特定す ることは困難である。

動的応答時の有効質量比の遷移から抽出され た1次変形の大きさに応じて動的応答のモード 形は3つのステージに区分することができる。 第1段階は1次変形が原点から降伏点変形まで の変形となる場合である。動的な1次外力分布 は弾性1 次外力分布形と同値となり、応答変形 は1次モードと2次モードそれぞれの変形を重 ね合わせたものになり, MPA が適用可能である。 第2段階は1次変形が降伏点からモードの応答 中心点が定常化する変形までの変形となる場合 である。動的1次外力分布は静的解析時の1次 モードから 1+2 次モード外力形に漸近する。応 答変形はその動的 1 次外力から静的解析によっ て求まる1次変形に降伏後徐々に小さくなる2 次モード外力形よる2次変形を加えた値となる。 第3段階は1次変形がモードの応答中心点が定 常化する変形以上の変形となる場合である。動 的1次外力分布は1+2次モード外力形となり変 形は1つのモードのみで縮約して推定すること ができる (NPA)。

第3段階の一定モードになる変形レベルは静 的解析のみで以下のように近似する。弾性モー ド形を重ね合わせた固定外力形による静的解析 の結果,変形の増加に対して変形モードが定モ ードを示し始める変形とする。これは,静的漸 増載荷による変形モードの最上階応答中心点 (見かけ上変形モードの水平変形成分が0となる Y座標位置)の推移が変形に対して一定の傾きで 変化する(定常化する)変形として算定する。

以上の方法を基本にして,静的解析に基づい て非線形応答を推定する手法を提案し,既往の 推定手法と解析結果を比較し,推定精度を検討 する。図-4に提案する応答推定手法のフロー 図を示す。まず1次モード外力形と重ね合わせ 外力形によって変形モードの応答中心が定常化 する変形における外力間で線形補間する外力に よって1次変形を求める。1次変形の大小に応じ て,第1段階ではMPAによって,第3段階では NPAによって非線形応答を推定する。第2段階 において2次モード変形は弾性範囲に留まるも のとする。応答推定値は1次モード外力による1 次変形に1次変形に応じて線形的に小さくなる2 次変形を加えた値とする。

図-4 提案する推定手法のフロー図

9. 有効質量比および応答中心の比較

提案した外力で静的解析を行った場合の1次 有効質量比の推移を図-2の中に太線に示した。 提案する外力モードを用いることによって静的 解析の1次有効質量比の推移は動的抽出モード 形の値に概ね対応する。ただし,試験体 Sp6a,6b など,応答中心点が定常化する変形を過大評価 したために有効質量比の推移が十分な精度で一 致しない場合もあり,今後改良の余地がある。

動的解析および異なる 3 つの外力モード形に よる静的解析(1次;1次と2次の重ね合せ;提 案した外力)を行った場合の変形モードについ て最上階の並進変形成分に対する回転変形成分 の比(重心と応答中心間距離の逆数)の推移を 図-5に示す。提案する外力による静的解析の 値は動的抽出モード形の値の推移と概ね対応し ている。すなわち,提案した外力による静的解 析は有効質量比という指標だけでなく,応答中 心という指標でも精度よく再現している。

10. 最大応答値の比較

最上階および1層のY1構面についてX方向 の最大応答変形について,非線形地震応答解析 結果と提案した等価線形応答による推定値を比 較して図-6に示す。等価線形応答における非 定常応答を考慮した低減係数αは0.8とした。横 軸には非線形応答の最大応答値(1次モード成 分)とし,縦軸は推定誤差(応答推定値の非線 形応答解析値に対する比)である。

推定値はMPA を用いる範囲では2次モード変 形を加えた値・引いた値の2種類をプロットし た。どの試験体についても最上階,1階ともに最 大水平変形角が1/33以上の非線形応答は既往の 等価線形化手法(NPA)を用いることで十分な精 度で推定可能であった。また,弾性1次モード 形の有効質量比が大きいSpla,1b,2a,2b,3a,3b では1つのモード変形が支配的になるため対象 とする変形範囲によらず精度の高い結果が得ら れている。図の解析結果は弾性モード形の1次 有効質量比による値が小さくても応答変形が大 きな範囲では既往の等価線形化手法を用いて非 線形応答を推定可能であることを示唆している。 既往の手法と比較して提案する推定手法は,最 大水平変形角が1/33以下の範囲で精度が向上し ているものの,非線形応答値に比べると小さい 値となった。これは2次モード変形および1次 との重ね合わせが依然過少評価になっているこ とが原因であると考えられ,改良の余地がある。

以上の推定では、応答変形レベルに応じて推 移する捩れモードの特徴にもとづいて、静的漸 増解析によってモードを近似特定する方法を示 し、定モード縮約系と等価線形化による推定と の精度を検証した。しかし、非線形時刻歴解析 を実用的に前提にする場合には、簡易推定手法 としての意義は薄れ、むしろ個別解析による非 線形捩れ応答の性状を一般的に理解するために 有意義になると考えられる。

11. 結論

本研究では偏心 RC 多層構造物において動的 応答モードの1次有効質量比M₁が弾性1次モー ドの値から 1,2 次モード重ねあわせ外力形によ る NPA 値に漸近する一般的な傾向があることを 明らかにした。この性質を利用して, NPA,MPA を組み合わせた動的応答に基づくモード形で非 線形応答を推定する手法を提案した。構造物の 最大変形と応答推定値を比較した結果,弾性モ ード形の1次有効質量比による値が小さくても, 最大水平変形角が 1/33 以上の大きな変形では NPA によって非線形応答を非常に高い精度で推 定可能であった。また提案した手法によって既 往の手法に比べて降伏変形前後で比較的精度の 高い推定結果が得られた。

参考文献

- Anil K.Chopra,Rakesh K.Goel:Modal Pushover Analysis symmetric and unsymmetric plan buildings, International Workshop on PBSD Concepts & Implementation, 2004.7
- 2) 大網浩一,村上雅也:単層一軸偏心線形系の地震応 答における動的ねじれ効果の指標,日本建築学会構 造系論文報告集,1999.7
- 3) 改正建築基準法法令集,日本建築センター,2000.7
- 藤井賢志:多層一軸偏心建物の非線形地震応答評価 手法に関する研究,博士論文,2002.12.
- 5) 李康寧, 壁谷澤寿海:鉄筋コンクリート造立体骨組 の弾塑性地震応答に関する研究, 博士論文, 1988. 12
- 6) 壁谷澤寿海,塩原等,小谷俊介,青山博之:鉄筋コン クリート造実大7層試験体の耐震性に関する 研究(その3)擬似動的解析,第6回日本地震工 学シンポジウム講演集,pp1161-1168,1982.12
- 7) 鉄筋コンクリート造建物の靭性保証型耐震設計指 針・同解説日本建築学会編, 1999.7
- 8) 壁谷澤寿一, 村瀬正樹, 壁谷澤寿海, 松森泰造: 異なる地震動を受ける偏心鉄筋コンクリート壁フレーム構造の震動実験, コンクリート工学年次論文報告集, 第 26 巻, No. 2, pp1159-1164, 2004.7
- 9) 渡辺明紀,壁谷澤寿海:鉄筋コンクリート純フレーム構造の地震応答変形量に関する研究,コンクリート工学年次論文報,No. 2021, pp137-142, 1990. 12.2