論文 大きな破断ひずみを有する連続繊維シートによる耐震補強

中井 裕司^{*1}・佐藤 英樹^{*2}・ANGGAWIDJAJA Dhannyanto^{*3}・上田 多門^{*4}

要旨:本論は、大きな破断ひずみと小さいヤング率を有している連続繊維シートを用いて耐 震補強した柱の正負交番載荷試験の結果を紹介する。用いた繊維は汎用品のポリエステル繊 維である。ポリエステル繊維シートで補強された柱は、塑性ヒンジ部に生じる大きな変形に シートが追随しながら拘束し、コンクリートの劣化を制御することにより、耐荷力を保ち大 きな変形性能を有することがわかった。この試験結果をもとに本手法で補強された部材の骨 格曲線を提案した。

キーワード: 耐震補強, PET 繊維シート, 破断ひずみ, 正負交番載荷

1. はじめに

柱の耐震補強工法は、巻立て工法が主流であ る。アラミド繊維シート巻立て工法は、繊維の 伸度が比較的大きく耐屈曲性が高いが故に、じ ん性補強の分野で秀でた性能を発揮している。 しかしながら補強量が少ない場合、柱の軸方向 筋がはらみ出す終局期にシートに求められる伸 度が不足していたため、シートが破断して耐力 を失うことがあった¹⁾。結果、アラミド繊維シー ト巻立て工法は多量の補強量が必要となり、鋼 板巻立て工法に比較してコスト高を招いている。

新保らは、ポリエステル繊維シート(以下:PET 繊維シート)で耐震補強した柱の正負交番載荷試 験を行っている。結果、せん断余裕度 0.73 の基 準供試体のじん性率 1.3 に対して、PET 繊維シー ト補強供試体はじん性率 20 以上とアラミド繊維 シート補強供試体より高い補強効率を得たが、 想定する塑性ヒンジ区間外でも大きなせん断変 形が生じた²⁾。

本研究では、図-1に示すようにせん断補強 区間にアラミド繊維シートを、じん性補強区間 に大きな破断伸度を有する連続繊維シートを用 いる方法による柱部材の耐震補強工法を提案す

拘束を与え,軸方向鉄筋のはらみ出し後に生じ るコンクリート塊の崩壊を受動的に高い伸度で 横拘束する機能を与える。その他の区間におい ては,アラミド繊維シートが,せん断ひび割れ の進展を抑え,変形モードを曲げモードにとど める機能を与えると考えた。

2. 実験概要

2.1 使用材料

使用した連続繊維シートと鉄筋の特性値を表 -1,2に示す。じん性補強区間の補強に用い

- *1 三井住友建設(株)土木技術部 (正会員)
- *2 北海道大学 工学部土木工学科
- *3 北海道大学 大学院工学研究科社会基盤工学専攻
- *4 北海道大学 大学院工学研究科社会基盤工学教授 工博(正会員)

た繊維シートの素材は、高強度型アラミド(A2)、 ポリエステル(PET)、ポリエチレンナフタレート (PEN)で、破断伸度はそれぞれ 4.1%、13.8%、4.5% である。PET 繊維シートの破断伸度は他に比較 して極めて大きいが、引張弾性率は1桁小さい。 その他の区間のせん断補強には、高弾性型アラ ミド(A1)を用いた。

コンクリートの圧縮強度は, SP.1~4, 5~12 がそれぞれ 29.5, 31.7N/mm²であった。

表-1	連続繊維シー	トの特性値
-----	--------	-------

		アラミド1	アラミド2	ポリエステ	ポリエチレン
		高弾性型	高強度型	ル	ナフタレート
		A1	A2	PET	PEN
単位質量		1.45	1.39	1.39	1.36
引張強度	N/mm^2	2,670	3,246	923	1,028
引張弾性率	N/mm^2	1.22E+05	7.95E+04	6.70E+03	2.26E+04
破断伸度	%	2.2	4.1	13.8	4.5

表-2 鉄筋の特性値

			S	P.1-10	SP.11-12		
軸方向鉄筋の降伏強度	fly	N/mm^2	D19	394	D25	371	
軸方向鉄筋のヤング率	Els	N/mm^2		1.76E+05		1.83E+05	
降伏ひずみ				2.20E-03		2.03E-03	
帯鉄筋の降伏強度	fvy	N/mm^2	D6	383	D10	361	
帯鉄筋のヤング率	Evs	N/mm^2		1.91E+05		1.85E+05	

2.2 供試体の形状および諸元

実験のパラメータを表-3に示す。供試体は, 断面が□400×400と600×600, せん断スパン比 が3~4, 軸方向鉄筋比が2.15~2.87%, せん断余 裕度が0.8~1.3 の12 体である。SP.1~4 供試体 は,各種の高伸度シートの性能を調べた。SP.5 ~12 は, PET シートに着目し各種のパラメータ による性能を比較した。なお,表中の補強前の せん断耐力はコンクリート標準示方書³⁾に,補強

図-2 供試体の断面例

表-3	実験のパラメータ	
衣一い	天殿のハノメータ	

供	:試体の諸元		SP.1	SP.2	SP.3	SP.4	SP.5	SP.6	SP.7	SP.8	SP.9	SP.10	SP.11	SP.12
	断面	mm		400*400							600*	*600		
	載荷点高さ	mm			1150					1500			22	.00
	せん断スパン比			3.1				4.0				4.0		
	軸方向応力	N/mm ²					1.0							
	軸方向鉄筋			5@				D19			6@D19	4@D19	6@	D25
	軸方向鉄筋比	%				2.	87				3.59	2.15	2.82	
	せん断補強筋				D6 S	s(せん断	補強鉄館	筋の配置	間隔)=1(00mm			D10 Ss=120mm	
	せん断補強筋比	%					0.	16					0.2	
	降伏曲げモーメント	kNm		271				2	72		330	216	8	36
	終局曲げモーメント	kNm	331					3	34		401	265	1018	
	曲げ耐力	kΝ		288 151 79 230			290	223		267	177	463		
	Vc	kΝ					155			169	151	318		
	Vs	kΝ					79			79	79	206		
	せん断耐力	kΝ					234			248	230	524		
	せん断余裕度		0.80				1.05			0.93	1.30	1.13		
せ	・ん断補強(A1sheet)	kN/m	Non.	400	400	400	200	100	100	Non.	100	Non.	200	Non.
ĺ	補強範囲		1.0xD						1.5xD					
	シートの種類		Non.	A2	PEN	PET			Non.		P	ET		
	シートの貼り方			1layar600	2layar300	2layar300	1layar300	1layar200	1layar100		1layar200	1layar100	2layar300	1layar300
ん性	<u>シートの厚さ(1面分)</u>	mm		0.252	0.764	0.748	0.374	0.249	0.125		0.249	0.125	0.748	0.374
補補	シートの耐力(2面分)	kN∕m		1636	1538	1410	690	460	231		460	231	1381	690
诵	補強せん断耐力	kΝ	0	213	201	184	90	60	30	0	60	30	264	132
1	補強後のせん断耐力	kΝ	230	443	431	414	324	294	264	234	308	260	788	656
	補強後のせん断余裕	度	0.80	1.54	1.50	1.44	1.11	1.32	1.18	1.05	1.15	1.47	1.70	1.42
終	局部材角													
	補強前の計算値			0.042			0.042		0.044		0.040	0.046	0.0)43
	実験値		0.039	0.064	0.064	0.060	0.057	0.067	0.060	0.054	0.064	0.071	0.069	0.061

後のせん断耐力は土木学会「連続繊維シートを用いたコンクリート構造物の補修補強指針(案)」に従った。じん性補強区間は全ての供試体で連続繊維シートのせん断補強効率を示すKは0.4となる。

じん性率の計算値は、せん断破壊しないもの と仮定して、コンクリート標準示方書⁴⁾にした がい、「部材の降伏変位は、部材断面内の鉄筋に 発生している引張力の合力位置の鉄筋が降伏す るときの変位」「部材の終局変位は、部材の荷重 -変位関係の骨組み曲線において、荷重が降伏荷 重を下回らない最大の変位」と定義される限界 値を用いた。なお安全率は全て1.0を用いている。 2.3 載荷方法および計測項目

載荷は, 1N/mm²の一定軸力のもとで柱頭部付 近を載荷点として静的水平交番載荷を行った。 初降伏変位(以下δyo)は,柱下端付近の軸方 向引張鉄筋ひずみが降伏ひずみに達する変位の 平均値として定義し,以後δyoの整数倍を片振 幅とした正負交番載荷を行った。各変位段階に おける繰返し回数は1回とした。

計測項目は,軸方向鉄筋と帯鉄筋のひずみ,

じん性補強区間シートの載荷面とせん断面のひ ずみをひずみゲージで,供試体の変位,軸方向 鉄筋の抜け出しによる変位を変位計で,本論で はふれないが塑性ヒンジ区間の変形詳細を特殊 ジグで測定した。

3. 実験結果

3.1 破壊性状と骨格曲線について

図-3に SP.1~12 供試体の包絡線と計算値を 示す。包絡線中の〇印は,順に降伏時・最大耐 力時・目視で確認された軸方向鉄筋の座屈時を 示している。計算値は,コンクリート標準示方 書⁴⁾による無補強状態の骨格曲線と PET 繊維シ ートで補強した場合の提案式を示している。縦 軸は軸力による偏心モーメントを考慮した作用 曲げモーメント,横軸は載荷点変位をせん断ス パンで除した部材角である。

部材の損傷進行は,連続繊維シートでじん性 補強されていない SP.1 と SP.8 を除いて,ほぼ同 一であった。SP.1 は曲げ降伏後にせん断破壊し た。SP.8 は,軸方向鉄筋の座屈後,急激に耐力

-1083-

を失った。連続繊維シートで補強した供試体は, 最大耐力時まで安定した履歴ループを示し,次 ループで軸方向鉄筋の座屈が観察され,耐力が 徐々に低下した。終局時には軸方向鉄筋に相当 のはらみ出しが生じているが,シートが破断し て耐力を急激に失うことはない。

SP.2~4 は、シートの種類をパラメータとして いる。包絡線やじん性率に大きな差異はなく、 一定量の補強量が有ればシートの引張剛性が部 材のじん性補強に積極的に影響していないこと がわかる。ただし、SP.2 の A2 シートは一部破断 した。したがって、本実験では、以後のじん性 補強に安価な PET シートを用いることとした。

シート補強された供試体の終局部材角は無補 強の計算値の平均 1.5 倍を示している。PET シー トでじん性補強された SP.4~12 は、シート補強 量が多い方が、補強前のせん断余裕度が大きい 方が、大きな終局部材角を得ている。

3.2 せん断面の補強材のひずみ

図-4に、せん断面で測定したシートおよび 帯鉄筋の平均ひずみと部材角の関係の代表例を 示す。凡例中の数字はフーチング上面からの距 離を表している。1 プロットは、シートひずみが 10 測点の平均値で、帯鉄筋のひずみが 2 測点の 平均値である。なお、破線したゲージの値は除 いている。せん断破壊した SP.1 は、終局時に帯 鉄筋ひずみが 1.8%程度を示していた。

無補強の SP.1 と 8 は,帯鉄筋のひずみが他の 補強供試体より大きく,最大耐力時に 1%,終局 時には 2%程度のひずみが生じている。つまり, のひずみは一致して漸増し、終局時にシートと 帯鉄筋に1%程度のひずみが生じている。

一方, PET シートで補強した供試体は,最大 耐力以降の軸方向筋の座屈が生じる時点からシ ートのひずみが卓越するようになる。これは載 荷面のはらみ出しをせん断面の PET シートが抑 制しているために生じていると考えられる。引 張剛性の大きいシートの場合は負担するせん断 力によるシートの張力で軸方向鉄筋のはらみだ し変形に対する反力を負担できるが, PET シー トの場合はさらに歪む必要があるためと考えら れる。この損傷の進行にしたがって増加するシ ートの引張力と破断しないことが最大耐力以降 に穏やかな軟化勾配で終局に到る要因と考える。

図-5に、最大耐力時と終局時における、コ ンクリートの負担したせん断力の計算値に対す る割合とシートの換算面積比(PET シートのヤ ング率で基準化)との関係を示す。コンクリー トの負担したせん断力は、作用せん断力からト ラス理論を用いて帯鉄筋とシートの負担したせ ん断力を差し引いたものである。終局時におい て、塑性ヒンジ部における載荷面のはらみ出し により補強材は引張ひずみを受けるが、コンク リートにはシートのひずみ相当分の圧縮力が導 入されるためトラス理論は成立すると考えた。 コンクリートの負担したせん断力は、(a)の最大 耐力時において、シートがほとんど負担するこ となく、コンクリートが計算値と同等程度の値 を負担しており、コンクリートがダメージを受 けていないことが分かる。(b)の終局時において,

せん断力により大きな 変形が生じ塑性ヒンジ 内のコンクリートが緩 んでいることが想像さ れる。

引張剛性の大きいシ ートで補強した SP.2 と3 は同一の傾向を示し,最 大耐力時から終局に到 るまでシートと帯鉄筋

図-4 せん断面のシートと帯鉄筋のひずみと部材角の関係(SP.2,7&8)

コンクリートの負担したせん断力は計算値に対 する割合がシートの平均ひずみ,最大ひずみに 対してそれぞれ平均 58%,36%であり,アラミ ド繊維シートで補強した場合と同程度の劣化割 合と考えられる⁵⁾。

3.3 載荷面のひずみ

図-6に、載荷面のシートの平均ひずみと部 材角の関係を示す。凡例中の数字はフーチング 上面からの距離を表している。1 プロットは、□ 400 断面と□600 断面でそれぞれ 6 測点と 10 測 点の平均値である。

傾向は、せん断面と異なり、最大耐力時まで ひずみはほとんど生じない。最大耐力後、軸方 向鉄筋の座屈に伴いひずみが急増する。平均ひ ずみが 3%を超えると増加傾向が小さくなるが、 これはひずみゲージの破線が生じるために増分 が見かけ上減少していると思われる。鉄筋の座 屈後は、シートひずみはほぼ線形に増大してい る。つまり、軸方向鉄筋の座屈を拘束力で押さ え込めない場合には、拘束体の平均ひずみは終 局時に 3%~4%以上 になると考えられる。

鋼板巻立て工法で補強した場合も軸方向鉄筋の 座屈を抑制することはできない。したがって, 塑性ヒンジ部の巻立て系の拘束体に求められる 性能は,大きな破断ひずみを有している必要が ある。鋼板巻立て工法は鋼板がコーナで破断し ないこと,シート系巻立て工法は,受動的に受 け止めるしかなく,大きな平均ひずみに耐える シートが必要であると考える。

3.4 シートの平均ひずみと最大ひずみの関係

図-7に、塑性ヒンジ内におけるシートの平 均ひずみおよび最大ひずみと部材角の関係を示 す。1 プロットは、せん断面の□400 断面、載荷 面の□600 断面でそれぞれ 40 測点の平均値であ る。図中には平均ひずみとその 2 および 3 倍値 も示している。

ここで、平均ひずみ、最大ひずみは、それぞ れ、最大耐力以降の部材の力学特性に関与する 物理量、シートの破断に対する物理量と考えて いる。せん断面、載荷面に関わらす、シートの ひずみは均一でなく、最大ひずみは平均ひずみ に対して2~3倍の値が生じていることが分かる。 この例では、最大ひずみはせん断面で3%、載荷 面で9%生じている。シートが負担するせん断力 に対応するひずみや鉄筋の座屈を受動的に抑制 するのに必要なひずみは未知であるが、部材の 求める限界値に対してシートが破断することは 避けなければならない。終局ひずみの大きなPET シートをじん性補強に適用するメリットは、上 記のような大きなひずみに対して余力を有する ことである。

図-7 塑性ヒンジ内におけるシートの平均ひず みおよび最大ひずみと部材角の関係(SP.4 & 11)

4. 補強工法に対する考察

大きな破断ひずみを有する連続繊維シートで 補強した柱の変形性能とせん断面および載荷面 のシートと帯鉄筋のひずみ特性を観察し,補強 が骨格曲線に与える影響を考察する。

大きな破断ひずみを有する連続繊維シートで 補強された柱は,最大耐力時おいて,シートは 骨格曲線に影響を与えるほどのひずみが生じて いない。終局時において,シートはせん断力を 弾性的に負担し軸方向鉄筋の座屈により大きな ひずみが生じながら,コンクリートの崩壊を制 御する作用がある。この結果,図-8に示すよ うに,終局部材角はシート補強量が増えるほど 補強前のせん断余裕度が大きいほど増大する。

すると、大きな破断ひずみを有する連続繊維 シートで補強された柱の特徴は、最大耐力時か ら終局時に到る軟化が通常の RC 部材より穏や かになると考えられる。補強された RC 部材の骨 格曲線の実験式を以下の仮定の元に得ることが できた。

(1) 最大耐力時の部材角は, コンクリート標準 示方書 耐震性能照査編⁴⁾に従う。

(2) 軟化勾配は、シートのじん性補強量と補強 前せん断余裕度をパラメータとする。

(3) 補強前のせん断耐力余裕度を表す物理量として,軸方向鉄筋比とせん断スパン比を用いる。

本実験の範囲内で,終局部材角は式(1)で,軟 化勾配は式(2)で表すことができた。式(1)で表せ る骨格曲線は,図-3に示している。式(2)の提案 した軟化勾配と実験値との関係を図-9に示す。

$$\theta_u = \theta_m + \eta_{pet_sheet} \cdot \left(1 - \frac{M_y}{M_u}\right) \tag{1}$$

$$\eta_{pet_sheet} = 0.093 \cdot \frac{L_a}{d} \frac{\left(K_{pet_sheet}\right)^{0.15}}{\rho_{\rm L}^{0.64}}$$
(2)

ここに、 θ_u :終局時の部材角 θ_m :最大耐力時の部材角 η_{pet_sheet} :シートで巻立てた柱の軟化勾配 d:柱の有効高さ (m) L_a :せん断スパン (m)

 $\rho_{\rm L}: 軸方向鉄筋比(100 \cdot As / b / h) (%)$ $K_{pet sheet}: シートの引張剛性 (Nm)$

5. まとめ

本実験の範囲内で下記の結論を得た。

(1) 連続繊維シートで補強された柱は、シート に破断が生じなければ、最大耐力時から終局時 に到る軟化が通常のRC部材より穏やかになる。
(2) 軸方向鉄筋の座屈後、塑性ヒンジ部の連続 繊維シートには 10%程度のひずみが観測された。
(3) 連続繊維シートで補強された柱の軟化勾配 を式(2)で評価できることを示した。

参考文献

- 勝木太ほか:アラミド繊維シートによる鉄道 高架橋柱のじん性能に関する実験的研究,コ ンクリート工学年次論文集, Vol.19.No.2, pp.1569-1574, 1997.6
- 新保学幸ほか:連続繊維シート補強 RC 柱部 材のじん性予測に関する研究、コンクリート 工学年次論文集, Vol.23.No.1, pp.883-888, 2001.6
- 3) 土木学会:2002 年制定 コンクリート標準 示方書,構造性能照査編
- 土木学会:2002 年制定 コンクリート標準 示方書,耐震性能照査編
- 5) 中井裕司ほか:連続繊維シートで補強した柱 のせん断耐荷機構,コンクリート工学年次論 文集, Vol.24.No.2, pp.1363-1368, 2002.6