論文 圧縮抵抗型ブレースを用いる既存RC造ピロティ架構の耐震補強におけ る既存梁部分の支圧耐力

幸加木 宏亮^{*1}・塩屋 晋一^{*2}・河野 圭悟^{*3}・原田 喜実^{*4}

要旨:ピロティ架構形式の既存RC造建物の耐震補強に関する研究である。補強方法は圧縮抵抗型のブレースを設置してピロティ階の剛性,耐力を効率よく増大させ,柱の高軸力を抑制することをねらいとしている。本研究ではブレースを接合する上梁の支圧耐力の強度式を構築することを目的に,上梁の支圧実験と,その支圧耐力の極限解析を行っている。実験は解析モデルが容易となる,ブレースの設置角度 θ が 90°の場合について行っている。そして,その実験結果に適合する支圧耐力の評価モデルを構築し,θ が 60°の場合にも適用できる評価式を誘導している。 キーワード:ピロティ架構,耐震補強,支圧耐力,極限解析,鉄筋コンクリート

1. はじめに

研究代表者ら¹⁾は、ピロティ架構形式の既存RC 造建物の簡易な耐震補強として、図-1に示すよ うに圧縮抵抗ブレースを設置する方法を提案して いる。そこでは、高強度のモルタルを充填した鋼 管ブレースを用い、仰角*θ*を60°~70°と想定して いる。この設計方法の課題の一つに、ブレースが 接合される梁部分の支圧耐力の評価があげられる。

本論文では、その支圧耐力の評価式を構築する ことを目的に行った、梁部分の追加支圧実験と、極 限解析について述べる。 θ が 60°の場合の上梁部分 の支圧実験は文献¹⁾で報告している。ここでは、比較 的解析が容易な場合として、 θ が 90°の場合を選択 して実験を行い、その結果に対して適合するよう に解析モデルを検討した。そして、 θ が 60°の場合 に適用できる支圧耐力の評価式を誘導した。

2. 梁の接合部分の支圧実験

2.1 試験体

図 - 2に試験体の基本形状と種類を示す。試験体 は3タイプである。A タイプは上階の壁とブレース に挟まれる状態で梁部分が上下面で支圧力を受ける もので,図 - 1において *θ*を90°とした場合である。 このタイプの破壊状況は壁側では三角錐状のくさび が形成され,ブレース側では円錐形状のくさびが形 成されることが明らかになっており¹⁾,BタイプとC タイプはそれぞれのくさびが形成される領域の支圧 *1 鹿児島大学大学院 理工学研究科建築学専攻

* 2 鹿児島大学 工学部建築学科助教授 工博

* 3 松井建設株式会社 (元鹿児島大学工学部建築学科学部生)

*4 積水ハウス株式会社 (元鹿児島大学工学部建築学科学部生)

強度特性を把握するためのものである。

図 - 2 中に示すように A タイプと B タイプではブ レース側の領域に高強度の無収縮モルタルを充填し

ており,梁せいDに対 してその充填高さ S_m を変化させている。図 - 2に配筋状況を示 す。表 - 1に試験体名 称と諸因子を示す。C タイプでは無筋の試 験体も製作している。 表 - 2に使用材料の 力学的特性を示す。

(正会員)

2.2 加力と測定

図 - 3 に A タイプの加力状況と変形の測定状況 を示す。試験体は 2000kN の耐圧試験機に設置され 壁のコンクリート部分またはブレースのモルタル断 面部分に一方向の漸増圧縮加力が行われている。他 の試験体もこれに準じている。変形は図中に示すよ うに加圧鉄板間の圧縮変形を測定している。

2.3 実験結果の概要

図 - 3 に最終ひび割れ状況の例を示す。図中には 初期ひび割れを太線で示している。試験体はいずれ も壁側の領域では三角柱状のくさびが形成され、ブ レース側の領域では円錐形状のくさびが形成される 状況に近かった。最終破壊形式は図 - 3 に示すよう に断面図のひび割れは非対称形のものになった。

図 - 4と図 - 5に圧縮荷重 - 圧縮変形関係を示す。 支圧破壊しているため最大荷重後は脆性的なものに なっている。AタイプとBタイプでは,モルタルの充 填高さが大きい試験体ほど最大荷重が大きくなって いる。表 - 3に初期ひび割れ荷重Pcrと最大荷重Pmax を示す。また同表には最大荷重をAタイプとBタイ プではブレースの面積で,Cタイプでは壁材の断面積 で除した応力 _bと,これをコンクリート圧縮強度で 除した比を示す。

3. 梁の接合部分の支圧耐力の極限解析

Chen²⁾が提案しているコンクリート円柱の割裂 耐力の解析モデルを基本とし,各タイプごとに修 正したモデルを示し,それによる計算値と実験値 の適合性について述べる。まず,全タイプの解析 で共通とする基本仮定を述べ,そして解析モデル が理解し易い方からCタイプ,Bタイプ,Aタイ プの順で述べる。

3.1 全タイプで共通の基本仮定

(1) コンクリートとモルタルの破壊基準は図 - 6 に 示すように修正 Mohr-Coulomb の基準を用いる。 一軸の圧縮強度 $_{c} f_{c} m f_{c}$ はシリンダーの圧縮 強度を用いる。 $_{c} f_{c}$ はコンクリートで $_{m} f_{c}$ はモ ルタルの値である。内部摩擦角 ϕ は多くの実験 結果とよく適合する 37°とする。²⁾ この時,コン クリートとモルタルの付着力 $_{c}c$, $_{m}c$ はそれぞ れ約 $_{c}f_{c}/4$,約 $_{m}f_{c}/4$ となる。評価式を簡略 にするために,モルタルの引張強度はコンクリー トの引張強度 f_{t} に等しいものとする。一軸の引 張強度 f_{t} は式(1)による強度を用いる。

$$f_t = 0.39_c f_c^{0.566} \qquad [N/mm^2] \qquad (1)$$

(2)図-7に破線で示すChenの円柱モデルでは力 学的な理想状態で対称形の破壊メカニズムを仮 定しているが、支圧破壊の場合はコンクリート の脆性的な特性に支配されるため、実験のひび 割れ状況は図-3に見られるように非対称形の 破壊モードになる。ここでは、図-9に示すよ うに対称形の破壊メカニズム(以後、対称形メ カニズム)と非対称形の破壊メカニズム(以後、 非対称形メカニズム)の2種類について検討す る。詳細はタイプ別に後述する。

表 - 1 試験体名称と諸因子

試験体名	Sm	配筋	梁主筋	あばら筋	積載面形状	試験体正式名称
A1 A2 A3	0 D/4 D/2	右	上端・下端 3-D10	3.5¢@110	鋼管 + 壁	EG-0-32-0.0 EG-0-32-0.25 EG-0-32-0.5
B1 B2	0 D/4	н	Pt = 0.52%	Pw = 0.12%	鋼管 + 鋼管	B-0.0 B-0.25
C2	ő	無	_		壁 + 壁	C-0.0-P

D:梁せい 300mm

表 - 2	使用材料の力学的特性	(応力単位:N/mm ²)
-------	------------	---------------------------

			$E_{c} (\times 10^{4})$	$_{c}\sigma_{B}$	_c ε _B (%)	$_{c}\sigma_{sp}$
	コンクリート		2.38	33.1	0.254	2.60
_	モルタル		2.50	87.0	0.489	3.41
		E_{s} (×10 ⁵)	$_{s}\sigma_{y}$	sσв		
÷	鉄筋	3.5 Ø	1.86	633	778	
2		D10	1.70	345	472	

E_:コンクリートのヤング係数, 。 。: 圧縮強度, 。。: 圧縮強度時ひずみ度, 。。: : 割裂強度 E_: : 鉄筋のヤング係数, 。 、, : 降伏強度, 。。: : 引張強度

表 - 3 各試験体の最大荷重

試験体名	P _{cr} (×10kN)	P _{max} (×10kN)	$\rm P_{cr} \ / \ P_{max}$	σ_{b} (N/mm ²)	$\sigma_{\rm b} / _{\rm c} \sigma_{\rm B}$
A1	45.1	54.0	0.834	66.1	2.0
A2	41.9	66.6	0.629	81.6	2.5
A3	72.5	92.6	0.783	113.3	3.4
B1	33.3	39.3	0.847	48.1	1.5
B2	35.3	52.3	0.675	64.0	1.9
C1	35.3	39.9	0.885	26.6	0.8
C2	37.2	42.2	0.883	28.1	0.8
C2	37.2	42.2	0.883	28.1	0.8

P_{cr}:初期ひび割れ荷重, P_{max}:最大耐力

 C'_1

適用範囲

30

計算結果

^{β (Deg.)} C 試験体の

20

タイプではすべりの面積がコンクリート領域とモ ルタル領域に分かれる。それらのタイプにも適用 できるように*W_{in}を*表すと,式(3)となる。

$$W_{in} = {}_{s}A_{c} \cdot {}_{c} c \cdot v \cdot \cos \phi + {}_{s}A_{m} \cdot {}_{m} c \cdot v \cdot \cos \phi + {}_{t}A \cdot \gamma \cdot 2\Delta R \cdot f_{t}$$
(3)

C タイプでは $_{s}A_{c}$, $_{s}A_{m}$, はつぎのようになる。

$${}_{s}A_{c} = n \cdot (t_{w}/2) / \sin \beta \cdot l , \quad {}_{s}A_{m} = 0$$
$${}_{t}A = D - 2 \cdot (t_{w}/2) / \tan \beta \cdot l$$

ここに,*t_w*:壁厚,*l*:梁・壁の長さ,*D*:梁せい β:くさびの先端角度,記号は図 - 7を参照

上式におけるnは上下のくさびの滑り面の枚数 で,対称形メカニズムでは4となり,非対称形メ カニズムでは,前述した理由により3となる。外 力の仕事率 W_Eは式(4)で表される。外力の仕事率 と内部のエネルギー散逸率を等しくおくことによ りβの変化に伴う支圧耐力 P_b が式(5)で表される。

$$W_{E} = 2P_{b} \cdot \Delta D \qquad (4)$$

$$P_{b} = 0.5({}_{s}A_{c} \cdot {}_{c}c + {}_{s}A_{m} \cdot {}_{m}c) \cdot \frac{\cos \phi}{\cos(\beta + \phi)}$$

$$+ {}_{t}A \cdot \gamma \cdot f_{t} \cdot \tan(\beta + \phi) \qquad (5)$$

(c)計算結果と実験結果の比較

図 - 10 に β を変化させた場合の計算結果を示す。 本試験体では β が 11°より小さい範囲で上下のくさ びの先端が交錯するため、それより大きい範囲が式 (5)の適用範囲になる。最小値が上界の解になる。 最小値の時の β は適用範囲内にある。図中に実験 値を水平の一点鎖線で示している。非対称形メカ ニズムの最小値(以後,非対称形の計算値)で実 験値を推定できる結果になっている。

(3) すべり面の単位面積あたりのエネルギー散逸率
$$_{S}D_{A}$$
と引張分離面の単位面積あたりのエネルギー
散逸率 $_{t}D_{A}$ はつぎのものを用いる。

$${}_{S}D_{A} = v \cdot c \cdot \cos\phi \qquad t D_{A} = \gamma \cdot v \cdot f_{t} \qquad (2)$$

× 40

<u>م</u> 20

0

0

図 - 10

10

上式の引張分離面では実験結果とよく適合する ように修正の低減係数 γを乗じる。ここでは全 モデルにおいて 0.3 とする。c は付着力で, v は すべり領域のすべり速度ベクトルである。

(4) 鉄筋の内部エネルギーは無視する。

非対称形

破壊メカニズム

の種類

3.2 Cタイプ

対称形

図 - 9

(a)破壊メカニズム

図 - 7に仮定する破壊メカニズムを示す。これは Chen が示した円柱のものと本質は同じである。上 下に三角柱状のくさびが形成され、それらに挟まれ る範囲に引張分離面が形成される。外力の鉛直の速 度 ΔD と、すべり面のすべり速度v、分離面の水平 速度 ΔR の関係は、図 - 8に示している。

非対称形メカニズムでは、上下のくさびのうち、 片方のくさびの2面のすべり面のうち、1面ではすべ り破壊が生じないものとし、その分のエネルギー散 逸は内部エネルギー散逸率に含めないことにする。

(b)エネルギーと釣り合い式

内部エネルギー散逸率 W_{in} は, すべり面の面積_SA と分離面の面積_tAに, それぞれ_SD_Aと_tD_Aを乗じ た値の総和に等しい。また,後述するAタイプ, B 3.3 Bタイプ

(a)破壊メカニズム

B タイプでは図 - 11 に示すように断面 X に沿う 引張ひび割れaが生じる。しかし、その断面は横切 る主筋により拘束されるため、支圧耐力を決定す る引張分離面とならない。その後、荷重が増加し、 ひび割れbが生じて支圧破壊する。その時には梁 の長さ方向に引張分離面 Y が形成されて、上下に 円錐形のくさびが形成される。ここでは、その時 の状態で支圧耐力を評価する。 図 - 12 に断面 Y に おいて仮定する破壊メカニズムを示す。引張分離 領域はくさびに沿うかたちで $k_B \cdot d$ の幅を考える。 k_B はひび割れ状況を考慮して 0.5 とする。

非対称形メカニズムでは,上下のくさびのうち, 片方のくさびのすべり面積のエネルギー散逸率を 50%に低減する。破壊メカニズムの運動はCタイ プの図 - 7,図 - 8と同じとする。

(b)すべり面積と引張分離面積

C タイプと同様にすべり領域の面積と引張分離 領域の面積を式(5)に代入することにより支圧耐力

図 - 11 耐力に関係する破壊断面 とひび割れb

を求めることができる。B2 試験体ではモルタルで 補強しているため、くさびのすべり面積が、コンク リートの面積*_s A_c* とモルタルの面積*_s A_m* に分かれ る。上下のくさびのすべり面積の総和は、それぞ れ式(6)、式(7)で表される。

$${}_{s}A_{c} = 2 \cdot (0.5\pi \cdot d_{c} \cdot S_{c}) \cdot \alpha \tag{6}$$

$$A_m = 2 \cdot (0.5\pi \cdot d \cdot h_s A_c) \cdot \alpha \tag{7}$$

ここに, $h = 0.5d / \tan \beta$, $S_c = h - S_m$, $d_c = 2 \cdot S_c \cdot \tan \beta$,記号は図 - 12を参照

αは非対称形メカニズムを考慮する低減係数で, (a)で前述した理由により 0.75 となり,対称形メカ ニズムでは 1.0 となる。

引張分離面の面積_tAは式(8)で表される。

$$A = 2 \cdot k_{B} \cdot d \cdot D \tag{8}$$

これらの面積を式(5)に代入すると耐力が求まる。 (c)計算結果と実験結果の比較

図 - 13 に β を変化させた場合の計算結果を示す。 図中には実験値を水平の一点鎖線で示している。 本試験体では β が 18° より小さい範囲では上下の くさびの先端が交錯する。また、B2 試験体では β が 34° より大きくなると、くさびがモルタルの 領域内だけに留まる。すなわち、 β が 18° ~ 34° の 範囲が式(6)、式(7)の適用範囲になる。両試験体 ともその適用範囲内で最小値になっている。両試 験体とも非対称形の計算値で実験値を推定できる 結果になっている。

3.4 Aタイプ

S

t

(a)破壊メカニズム

このタイプでも B タイプと同様に,最終的には 梁の長さ方向に分離面が形成される。ブレース側 に B タイプと同様に円錐形のくさびが形成され,壁 面側に C タイプとほぼ同様の三角柱状のくさびが 形成される。図 - 14 に仮定する破壊メカニズムを 示す。ブレース側の引張領域の幅は B タイプと同じ とし,ブレースの直径を含めた長さ L_B は2· k_B ·d+dとなる。壁側のくさびの長さ L_w はブレースの外周 の左右の最外点から左右に 45°方向に広がる線(図 中の破線)と梁上面の交点(P点,Q点)の2点間の 水平距離とする。すなわち L_w は2D+dとなる。 また,引張分離面積は台形 OPQR の面積から上下の くさびに関係する面積を差し引いた残りのものと する。非対称形メカニズムでは,実験の破壊状況に 基づき壁側のくさびのすべり面積のエネルギー散逸 量を50%に低減する。破壊メカニズムの運動はCタ イプの図 - 7,図 - 8と同じとする。これは、くさび の先端角度 β と鉛直変位 ΔD をブレース側と壁側で 等しくすることになる。

(b) すべり面積と引張分離面積

モルタルで補強されるため,B2 と同様にブレース側の円錐形のくさびはコンクリートのすべり面積 $s^{A_{BC}}$ とモルタル領域のすべり面積 $s^{A_{BM}}$ に分かれる。またA3 ではモルタルの深さ S_{m} が大きくなるため,そのくさびがモルタル領域内だけに留まり,くさびの高さhが S_{m} より小さくなる。以下にそれぞれの場合の面積を表す。

[1] $h \ge S_m$ の場合

$${}_{S}A_{BC} = 0.5\pi \cdot d_{c} \cdot S_{c}$$

$${}_{S}A_{Bm} = 0.5\pi \cdot d \cdot h - {}_{S}A_{BC}$$
(9)

[2] *h* < *S*_mの場合

 $_{S}A_{BC} = 0$, $_{S}A_{Bm} = 0.5\pi \cdot d \cdot h$ (10) 壁側のくさびのすべり面積 $_{S}A_{WC}$ はつぎのように 表される。

$${}_{s}A_{WC} = \left\{ 0.5(L_{W} + L_{W}(\beta))S_{W} / \cos\beta \right\} 2\alpha \quad (11)$$

ここに, $L_w(\beta) = L_w - (L_w - L_B)/D \cdot S_w$, $S_w = 0.5 \cdot t_w / \tan \beta$,記号は図 - 14を参照

上式では,式を簡略にするため図 - 14の黒塗り の面積は無視した。 α は非対称形メカニズムでは(a) で前述した理由により 0.5 となり,対称形メカニズ ムでは 1.0 となる。コンクリートとモルタル面積 $_{s}A_{c}$, $_{s}A_{m}$ は式(12)のように表される。

$${}_{S}A_{\mathcal{C}} = {}_{S}A_{B\mathcal{C}} + {}_{S}A_{W\mathcal{C}} , \quad {}_{S}A_{\mathcal{M}} = {}_{S}A_{B\mathcal{M}}$$
(12)

引張分離領域の面積tAは式(13)のように表される。

 $_{t}A = 0.5(L_{B} + L_{W}(\beta))S_{W} - 0.5d \cdot h$ (13)

(c)計算結果と実験結果の比較

図 - 15 に β を変化させた場合の計算結果を示す。 図中には実験値を水平線で示している。A1 では非 対称形の計算値が実験値をほぼ推定している。A3 では非対称形の計算値は実験値を過小評価している。 A2 では過大評価している。A2 では図 - 4の荷重変 形関係でみられたように最大荷重以前の剛性が他の 試験体に較べて小さく,何らかの原因により実験値 が小さくなった可能性がある。そこでA2のモルタ ル深さが A1 と A3 の深さの中間である同図には A1 と A3 の実験値の平均値も示している。計算値 をみると,実験値の平均値をほぼ推定していること がわかる。

4. 実際の補強の場合の支圧耐力の評価

実際の補強ではブレース設置角度 θ を 60°~70° の範囲で想定している。その場合の破壊メカニズム は極めて複雑になり,それを直接,見いだすのは極 めて難しい。ここでは,A タイプ,すなわちθが90° の場合の評価法を準用する。

(a) A タイプの評価モデルを準用する方法

図 - 16 に示すようにブレースの材軸を延長した 線を断面線として切り出される断面を梁断面とする 梁が,ブレースの材軸に対して直角におかれている 仮想の状態を考える。この仮想の梁に対して,A タ

イプの方法を適用する。

この仮想の梁は,梁せい が D/sin θ となる。またモ ルタル深さは,ブレースの 軸線上の深さ S_m /sin θ と する。この仮想の梁の支圧 耐力を評価する際の内部エ ネルギーは,図 - 17に示す 破壊メカニズムの内部エネ

図 - 16 が変化する場合の支圧 耐力を評価するための仮想の梁

実際の梁 P D L d

仮想の梁と内部エネルギー 図 - 17 が等しい破壊メカニズム

ルギーにほぼ等しい。図 - 17の点O',P',Q',R' は仮想の梁上の点O,P,Q,R,を仮想の梁の材軸に対 して直交方向に移動した点である。すなわち,図-16の仮想の梁の支圧耐力は、図 - 17の梁の破壊メ カニズムの支圧耐力にほぼ等しい。この証明は紙面 の関係で省略するが,滑りの面積と分離の面積を表 すことにより容易にできる。

(b)実験値と計算値の比較

文献1)ではか60°の場合の試験体4体について 支圧実験を行っている。図 - 18にその実験の最終破 壊状況の一例を示す。梁の断面形状, 寸法, 配筋, 壁厚,ブレースモルタルの直径は,今回の試験体と 同じである。補強したモルタルの形状が異なり、ま たコンクリートとモルタルの強度特性が,多少異な る。図 - 19に4体の試験体に対して上記の方法を適 用して求めた計算結果を示す。また支圧耐力の実験 値を水平の一点鎖線で示す。非対称形の計算値が、 実験値をほぼ推定している。その推定誤差は-8~ 4%であった。これらのことから,前節で示したAタ イプの評価方法は,本節で示した修正方法を適用す ることにより, θ が 60°~90°の場合の梁の支圧耐力 を評価できると判断できる。

(c)支圧耐力式

図 - 15 と図 - 19 において β が 20°の時の計算荷 重は最小値にほぼ等しい。そこで βを20°とし,3.1 節の仮定に基づき ϕ を37° γ を0.3 $_{c}c$ を $_{c}f_{c}/4$, $m^{C} e_{m} f_{c} / 4 と U, f_{t} e 式(1) で表すと, 式(5) はつ$ ぎのように表される。

> $P_b = 0.183({}_sA_c \cdot {}_cf_c + {}_sA_m \cdot {}_mf_c)$ $+0.18 \cdot A \cdot c f_c^{0.566}$ (14)

上式の $_{s}A_{c}$, $_{s}A_{m}$, $_{t}A$ の面積に関する式(9)から 式(13)を,実用範囲を考慮して簡略化することによ り支圧耐力の設計式が誘導されることになる。

5. まとめ

ブレースが接合される上梁部分の支圧耐力式を構 築するために、上梁の支圧実験と極限解析を行っ た。その結果,ブレースの設置角度θが60°~90°と なる範囲の強度式の基本式を提案し、それによる計 算値は*θ*が60°の場合の実験値を-8~4%の誤差で 推定できた。

謝辞

本研究は (財)国土技術研究センターの「既存鉄 筋コンクリート造集合住宅の低負荷型耐震補強技術 の開発」の研究開発助成(代表者:塩屋晋一)の一部 として行われました。ここに謝意を表します。 参考文献

- 1) 塩屋晋一他: 圧縮抵抗型ブレースを用いる RC造 ピロティ架構の耐震補強 日本コンクリート工学 年次論文集.Vol.25, pp.1561-1566, 2003.7
- 2) W.F.Chen: コンクリート構造物の塑性解析, 丸善,1985