論文 十字鉄骨を内蔵したSRC柱材の構造性能評価法に関する研究

堺 純一^{*1} · 李 麗^{*2}

要旨:十字鉄骨を内蔵した鉄骨鉄筋コンクリート(SRC)柱材は,十字鉄骨によるコンクリー トへの高い拘束効果が期待できるため,単一H形鋼を内蔵したSRC柱材に比べ,変形性能の 点で優れた性状を示す.本研究では,十字鉄骨を内蔵したSRC柱材の弾塑性解析を行い,載 荷実験結果と比較することにより,柱材の弾塑性変形性状の評価法について検討した.特に 十字鉄骨を内蔵することによるコンクリートの拘束効果について検討するとともに,柱材の せん断スパン比が拘束効果に与える影響を検討し,その評価法を示した. キーワード:SRC柱,弾塑性解析,載荷実験,弾塑性変形性状,コンクリートの拘束効果

1.はじめに

著者らは単一H形鋼を強軸に内蔵した鉄骨鉄 筋コンクリート(以下SRC)柱材を対象として, 柱材の復元力特性について検討した^{1),2)}。SRC柱 材の鉄骨には種々の断面形状の鉄骨が内蔵され, 建築構造物の中柱にはH形鋼をクロスさせて製作 した十字鉄骨が用いられる場合が多い(図-1の 柱試験体断面参照)。十字鉄骨を内蔵したSRC柱 材は,単一H形鋼内蔵SRC断面では期待できな い鉄骨によるコンクリートへの高い拘束効果が 期待できる。しかしながら,その定量的な評価法 は未だ明らかとされていないのが現状である。そ こで,本研究では十字鉄骨を内蔵させたSRC柱 材のコンクリートの拘束効果を考慮した弾塑性解 析³⁾を行い,実験結果と比較することにより,柱 材の構造性能評価法について検討する。

2. 実験概要

2.1 実験計画

地震時応力に対応する鉛直荷重と繰返し水平力 を受ける SRC 柱材の弾塑性変形性状を調べるた めに,柱試験体を7体製作し載荷実験を行った³⁾。

試験体の断面寸法は200×200mmで,内蔵鉄骨 はロールH形鋼H-125×60×6×8を用いて溶 接により製作した十字鉄骨である。主筋はSD345 のD13を4本(主筋比1.32%)とし,横補強筋に

*1 九州共立大学 工学部建築学科教授 博士(工)(正会員) *2 熊本県立大学 環境共生学部居住環境学専攻助教授 博士(工)

は SGDB の 4 ¢ を使用しフレア溶接することによ り閉鎖型フープとした。横補強筋比*p*wは0.31%で ある。試験体形状を図 - 1に示す。

実験変数には,せん断スパン比 *L*/*D*(=2,3,4,5,6の5種類)と軸力比 *n* = *N*/*N*_u(=0.1,0.3,0.5の3種類)を選んだ(表 - 1参照)。ここで,*L*は柱材長,*D*は柱断面せい,*N*は載荷軸力,*N*_uは断面圧縮耐力で次式で算定している。

$$N_u = {}_c A \cdot {}_c \sigma_B + {}_s A \cdot {}_s \sigma_v + {}_m A \cdot {}_m \sigma_v \tag{1}$$

上式中, $_{sA, mA, cA}$ はそれぞれ,鉄骨,鉄筋お よびコンクリートの断面積, $_{c}\sigma_{B}$ はコンクリート の圧縮強度(表 - 1参照), $_{s}\sigma_{y, m}\sigma_{y}$ はそれぞれ 鉄骨および鉄筋の降伏点である(表 - 2参照)。 載荷装置を図 - 2に示す。実験は柱脚固定,柱

頭ピン支持の境界条件で行い,所定の軸力を加 え,一定に保持した状態で水平力Hを載荷した。 2.2 実験結果

軸力比が 0.3 の試験体はせん断スパン比に拘わ らず部材角 *R* = 1.0%程度で曲げひび割れが生じ, その後 *R* = 2%前後でかぶりコンクリートの圧壊 が始まり,*R* = 4%程度でかぶりコンクリートのほ とんどが剥落した。せん断スパン比4以下の試験 体(C23,C33 及び C43)は*R* = 5%前後で主筋の座

屈が目視により確認された。せん断スパン比が5 および6の試験体(C53とC63)では実験終了ま で主筋の座屈は認められなかった。内蔵鉄骨の座 屈は確認できていないが、横補強筋に囲まれたコ ンクリートの損傷は激しくなく、内蔵鉄骨に座屈 は生じていないと考えられる。軸力比0.1の試験 体C31は早期に曲げひび割れが生じ始めR = 2%前後でかぶりコンクリートの圧壊が始まったが、 R = 6%まで抵抗力が低下することなく安定した

表 - 1 実験変数

	-			•
試験体 名	せん断 スパン比	軸力比 n	載荷軸力 N (kN)	コンクリート強度 _{c B} (N/mm²)
C23	2	0.3	751	34.1
C31		0.1	254	35.1
C33	3	0.3	762	35.1
C35		0.5	1252	34.1
C43	4	0.3	763	35.3
C53	5	0.3	769	35.8
C63	6	0.3	761	35.1

表-2 鋼材の機械的性質

	規格	降伏点	引張強度	降伏比	伸び		
鋼材		σγ	σu	σy	ε _B	備考	
		(N/mm²)	(N/mm²)	σ_u	(%)		
L 120v60v6v9	SS400	327	464	0.70	32.2	フランジ	
H-1202002028		349	470	0.74	34.5	ウエブ	
D13	SD345	377	564	0.67	26.6	主筋	
4φ	SGDB	377	477	0.79	22.0	横補強筋	

挙動を示した。軸力比が0.5の試験体C35はR= 1.0%前後でかぶりコンクリートが圧壊し始め,R =3%で主筋の座屈および横補強筋の母材の破断 が目視により確認できた。その後,R=4%前後で コンクリートの圧壊が激しくなり、鉄骨フランジ が露見し、フランジの局部座屈が確認できた。

図 - 3 に実験で得られた水平荷重 H と部材角 R の関係を示す。図中の一点鎖線は柱脚フェイス位 置で,柱断面が計算曲げ耐力を発揮するときの水 平耐力である。太線は,計算曲げ耐力として鋼材 の降伏点とコンクリート圧縮強度 $c\sigma_B$ を用いて計 算した一般化累加強度 M pc1 であり,細線は鋼材 の降伏点とSRC規準⁴⁾に従いコンクリートの強度 として $_{c}\sigma_{B}$ に低減係数 $_{c}r_{u}(=0.85-2.5,p_{c}:,p_{c}t)$ 引張側フランジ断面積のコンクリート面積に対す る比)を乗じた強度を用いて計算した一般化累加 強度 *M* pc2 である。いずれの試験体も柱脚フェイ ス位置で*M_{pc1}を発揮していることがわかる。*弱 軸曲げのH形鋼は鋼材が断面の中心に位置するた め鋼材が塑性化しにくく、鋼材が降伏したときに はコンクリートが圧壊し強度低下を起こすため, 断面耐力は一般化累加強度 M_{pc1}を発揮しにくい 状況にある⁵⁾。強軸H形鋼と弱軸H形鋼がある十 字鉄骨を内蔵したSRC柱材が一般化累加強度 M_{nc1}を発揮できるのは, 十字鉄骨によってコン クリートが拘束され,圧縮強度が上昇することに よるものと考えられる。

表-3 コンクリートの構成則の $\frac{c\sigma}{c\sigma_{cB}} = \frac{A(c\varepsilon/c\varepsilon_0) + (D-1)(c\varepsilon/c\varepsilon_0)^2}{1 + (A-2)(c\varepsilon/c\varepsilon_0) + D(c\varepsilon/c\varepsilon_0)^2}$ (4) $A = c E \cdot c \varepsilon_0 / c \sigma_{cB}$ (5) $D = 1.50 - 1.68 \times 10^{-3} \cdot \sigma_{B} + 0.75 \cdot \sigma_{re}^{2}$ (6) $_{c}\sigma_{cB} = _{c}\sigma_{B} + k_{e} \cdot \sigma_{re}$ (7) $\sigma_{re} = 0.5 \cdot \rho_h \sigma_{hs} (d''/C_i) (1 - s/(2D_c))$ (8) ここで, $_c\sigma$, $_c\varepsilon$: コンクリートの応力と歪, $_c\sigma_{cB}$, $_c\varepsilon_0$: 拘束さ れたコンクリートの圧縮強度と強度時の歪, _cE:コンクリートの 始源剛性 , $c\sigma_B$:シリンダー強度 , k_e :拘束係数(=23), σ_{re} : 有効側圧因子 , ho_h :横補強材の体積比 , σ_{hs} :横補強材の降伏応

補強材の間隔および外周横補強筋間距離である.

- 3. 弾塑性解析
- 3.1 解析モデル

図 - 4 に示す弾塑性ヒンジ部と剛体からなるモ デルを用い解析を行った。弾塑性ヒンジ部のモー メント - 曲率関係は平面保持の仮定のもとで断面 区分法により求めた。解析に使用した鋼材の応力 - 歪関係を図 - 6 に示す^{1),2})。コンクリートは包 絡線に崎野・孫モデル⁶⁾(表-3参照)を,繰返 し則に渡辺らのモデル⁷⁾を用いた(図-7(a)参 照)。さらに,弾塑性ヒンジ部での曲率 ∉と柱部材 角Rの間には下式が成り立つものとしている。

$$R = \alpha \cdot L \cdot \phi \tag{2}$$

$$\alpha = 0.1 + 1.3 D_{I}$$
 (3)

上式は、単一H形鋼を内蔵させたSRC柱材を対 象とした弾塑性解析で,実験と解析の初期剛性を 一致させることを目的として求めたものであり, 大変形域までの実験挙動を精度よく解析で評価で きている^{1),2)}。コンクリート系部材では損傷が激 しい材長方向の領域(塑性域)が柱脚から断面せ い程度上がった部分に集中し 塑性域長さ(式(2) 中の $\alpha \cdot L$ の値)は損傷に拘わらず材長方向に広が らないこと,弾性・弾塑性に拘わらず柱材の変形

は材端での曲率が塑性域に対応する長さ内で一様 に分布した状態での変形で表されるものと考えら れるため、この仮定を用いた。十字鉄骨を内蔵し た本実験に対する解析と実験の初期剛性を比較し た結果を表 - 4に示している。十字鉄骨を用いた 場合でも、両者の初期剛性はほぼ一致しており式 (2),(3)の仮定が適用できることがわかる。

3.2 コンクリートの拘束効果

拘束されたコンクリートは鉄骨フランジを押し だすことにより、その結果ウェブに引張力が働く ためウェブを図 - 5(b)に示す中子筋と同等の効果 があると捉えることができる。このことより、直 交ウェブがある十字鉄骨の場合、有効支持長さ*C*_i を外周横補強筋間距離*D*_cの1/2に半減させる効果 があると考えられる(表 - 3参照)。さらにウェ ブに働く引張力でコンクリートが拘束されること を考えると 表 - 3中の式(8)の横補強材の体積比 ρ_hにウェブ体積も含めることが可能と考えられる。図 - 7(b)は載荷実験を行った試験体に対してコンクリートの応力 - 歪関係を文献6)に従い算定したもので,十字鉄骨を内蔵した場合の応力 - 歪関係を実線で示している。ρ_hにウェブ体積を全て含めた場合(Rw=100%)は,Rw=0に比べ,かなり大きな拘束効果が期待できることがわかる。図 - 7(b)中の一点鎖線は中子筋がないもので,内蔵鉄骨によるコンクリートの拘束がない,単一H形鋼を内蔵したSRC断面に対応するものである。3.3 解析結果

(1)荷重-変形関係

図 - 7(b)に示すコンクリートの応力 - 歪関係を 使用して解析を行った結果を図 - 8に示す。軸力 比が0.3で,*L/D*が3の試験体を図 - 8(a)と(b)に, *L/D*が5の試験体を図 - 8(c)に示している。弾性 から弾塑性状態までの解析結果と実験結果を比較

図 - 6 鋼材の応力 - 歪関係

表 - 4 実験結果と弾塑性解析の結果の比較

	実験	値	R=4%	弹塑性解析結果									
試験	初期剛性	最大耐力	耐力	初期剛性	剛性比	最大耐力		最大耐力比		R=4%耐力		4%時耐力比	
体名	exK=H/R	exMmax	exMR4	anK=H/R	exK	anM1	anM2	exMmax	e <u>xMma</u> x	anMu1	anMu2	exMR4	exMR4
	(KN)	(kNm)	(KNM)	(KN)	anK	(kNm)	(<u>k</u> Nm)	anM1	anM2	(KNM)	(kNM)	anMu1	anMu2
C23	24,761	74.3	72.8	24,332	1.02	68.0	70.0	1.09	1.06	56.8	66.5	1.28	1.09
C31	13,716	76.3	72.2	13,863	0.99	67.5	69.0	1.13	1.11	60.2	67.4	1.20	1.07
C33	16,259	77.5	71.6	15,525	1.05	69.1	70.8	1.12	1.09	57.8	67.4	1.24	1.06
C35	14,977	76.0	49.1	15,581	0.96	64.4	67.8	1.18	1.12	20.1	52.2	2.44	0.94
C43	12,053	82.1	67.7	11,098	1.09	69.3	69.8	1.18	1.18	58.4	64.3	1.16	1.05
C53	8,986	78.5	66.6	8,584	1.05	69.8	71.3	1.12	1.10	59.2	68.3	1.13	0.98
C63	6,288	76.4	63.4	6,714	0.94	69.1	70.8	1.11	1.08	59.7	68.3	1.06	0.93

初期剛性 exK:実験結果のR=0.5%時の割線剛性, anK:解析結果のR=0.5%時の割線剛性

最大耐力 anM1:コンクリートの構成則で図7(b)においてRw=0として求めた弾塑性解析の最大耐力

最大耐力 anM2:コンクリートの構成則で図7(b)においてRw=100%あるいは50%として求めた弾塑性解析の最大耐力

R=4%耐力 anMu1:コンクリートの構成則で図7(b)においてRw=0として求めた弾塑性解析でR=4%時の耐力

R=4%耐力 anMu2:図7(b)においてRw=100%あるいは50%として求めた弾塑性解析でR=4%時の耐力

し易いように解析結果では部材角Rが4%までを 示している。軸力比が0.3でL/D=3の試験体では, ρ_h にウェブ体積を含めないコンクリートの構成 則(図-7(b)中のRw=0)を用いた場合には,大 変形時に解析結果は実験挙動を過小評価している (図-8(a-1))が, ρ_h に全ウェブを含めた構成則 (図-7(b)中のRw=100%)を用いると,大変形ま で実験挙動をよく評価できている(図-8(a-2))。 部材角Rが4%以降の解析ではコンクリートの損 傷に伴う逆S字形の様相が大きくなってくるが, 除荷点での耐力は実験結果をよく評価している。 L/D=2の試験体も同様である。L/D=3で軸力比 が0.5の試験体では部材角Rが3%で主筋に座屈 が生じた後は実験結果と解析結果に違いが見られ るがR 3%では実験結果をよく評価している (図-8(b)参照)。

一方,L/D=5では,逆に ρ_h に全ウェブ体積を含 めた構成則を用いて計算した解析結果は大変形域 で実験挙動を過大評価することになり,ウェブの 体積を考慮しないRw=0のときの構成則を用いた 方が実験結果をよく評価している(図 - 8(c-1)と (c-2)参照),L/D=6でも同様な結果となっている。 以上のことより,コンクリートの拘束効果にはせ ん断スパン比(L/D)の影響を考慮すべきであり, 図 - 9に示すようなウェブの有効寄与係数Rwと せん断スパン比L/Dの関係が考えられる。この関 係をもとに計算したL/D = 4の試験体の解析結果 と実験結果の対応を図 - 8(d)に示しているが,実

験挙動をよく評価しているものと考えられる(この試験体では,Rw=100%および0では実験結果を それぞれ,過大評価,過小評価している)(表-4 参照)。せん断スパン比の増大と共にウェブの拘 束寄与率が低下する理由は,短柱では材端拘束の 影響を大きく受け,材長が長くなるに連れてこの 影響が小さくなることによる要因が考えられる。

(2)中心軸歪

図 - 9に示す関係を用いてコンクリートの構成 則を考慮した場合の中心軸歪の解析結果と実験結 果を比較した例を図 - 10に示す(せん断スパン 比3の試験体)。実験の中心軸歪は柱脚フェイス位 置における内蔵鉄骨断面の中心軸歪であり,強軸 H形鋼の両フランジ表面に貼付した歪ゲージの平 均値として求めた。実験結果と解析結果に乖離が 見られる試験体もあるが,解析結果は中心軸歪の 挙動の傾向をほぼ評価しているといえる。

(3) 等価減数定数

図 - 9の関係を用いてコンクリートの構成則を 考慮した場合の解析結果と実験結果のそれぞれの 等価減衰定数を算定した結果の例を図 - 11 に示 す。他の試験体もこの結果とほぼ同様に,解析結 果と実験結果は大変形までほぼ一致している。

4. 結論

+字鉄骨を内蔵した SRC 柱材の鉄骨によるコ ンクリートの拘束効果を考慮して,柱材の弾塑性 解析を行い,SRC柱材の構造性能評価法について 検討した結果,以下の知見が得られた。

1) 十字鉄骨によるコンクリートへの大きな拘束 効果が期待でき,この効果を考慮することに よって,大変形域までの柱材の弾塑性挙動を 精度よく評価できることを示した。

2) コンクリートの拘束効果に寄与する横補強筋 材にウェブの効果を考慮することが妥当であ るが,せん断スパン比が大きくなるにつれて, この拘束効果は小さくなる。本実験結果と解 析を比較した限りでは,ウェブの拘束効果の 寄与率は図-9に示す関係で評価できる。

参考文献

- 切 堺純一,松井千秋:鉄骨鉄筋コンクリート柱部材の復元力特性に関する研究-単一H形鋼を内蔵したSRC柱の骨格曲線の定式化-,日本建築学会構造系論文集,第534号,pp.183-190,2000.8
- 2) 堺純一,松井千秋:鉄骨鉄筋コンクリート柱材の 復元力特性,コンクリート工学,Vol.40,No.3, pp.28-35,2002.3
- 3) 犬丸啓一郎,李 麗,堺純一,松井千秋:鉄骨鉄 筋コンクリート柱材の弾塑性挙動に関する実験的 研究,日本建築学会大会学術講演梗概集,構造III, pp.1079-1080,2000.9
- 4) 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説,2001.8
- 5) 松井千秋, 堺純一, 土肥謙治: 高性能鋼を用いた SRC柱部材の終局耐力に関する研究,構造工学論 文集, Vol.40B, pp.385-390, 1994.3
- 6) 崎野健治,孫玉平: 直線型横補強材により拘束されたコンクリートの応力- 歪関係,日本建築学会構造系論文集,第461号, pp.95-104, 1994.7
- 7) 渡辺史夫, 六車熙ほか: 各種強度の鉄筋混使用に よる RC 断面曲げ性能の制御, 日本建築学会大会 学術講演梗概集, 構造 II, B, pp.505-506, 1991.9

謝辞

本研究は九州大学卒業生の藤崎亮介氏(現鉄建建 設)のご協力を頂いた。