論文 施工性を向上させた SRC 造内部柱梁接合部のせん断耐力抵抗性能に 関する実験的検討

原藤 清佳*1·北野 敦則*2·後藤 康明*3·城 攻*4

要旨:当研究室ではこれまでに柱梁とも SRC 造の柱梁接合部に関して,終局せん断耐力修正式を 提案してきた。しかし, SRC 造柱梁フレーム構造は現場施工において施工性の悪さにより敬遠され がちであり,柱 RC・梁 S 構造等の合成構造が普及し始めている。本研究では上記した修正式の柱 SRC・梁 S 造接合部への適合性と,施工性を向上させた SRC 造柱梁接合部のせん断抵抗性能を 検討した。その結果,修正式における柱 SRC 造・梁 S 造の有効幅を見直した。 キーワード:鉄骨鉄筋コンクリート造,柱梁接合部,柱鉄骨断面形状,せん断耐力

1. はじめに

当研究室ではこれまでに SRC 造柱梁接合部 の実験を行い,現行の日本建築学会 SRC 規準 式¹⁾と実験値の不適合性を指摘し,諸家の既報 の実験データを用いた統計解析から接合部せ ん断耐力は,コンクリート,接合部ウェブ,直交フ ランジ及び枠効果の4つのせん断抵抗要素で評 価できるとして修正式を提案してきた²⁾。また, SRC 構造は現場施工において接合部の配筋な ど,施工性の悪さにより敬遠される傾向がある。 本研究は当研究室提案の SRC 造柱梁接合部に おける終局せん断耐力修正式を柱 SRC 梁 S 造 の接合部へ適用する際の問題点,及び施工性 を向上させた SRC 造における柱梁接合部のせ ん断抵抗性能を検討することを目的とする。

2. 実験概要

2. 1 試験体計画

図-1~2および表-4に試験体概要,表 -1~3にコンクリート,鉄筋,鋼板の力学的特 性を示す。試験体は多層多スパンSRC矩形ラー メンの中間階内柱梁接合部を想定し,柱梁の中 央反曲点位置で切り出した実大の約 1/2 縮小ス ケール平面十字形の試験体である。柱梁 SRC

*1(株)塩見 工修 (正会員)

*2 北海道大学助手 大学院工学研究科社会基盤工学専攻 工博 (正会員)
*3 北海道大学助教授 大学院工学研究科社会基盤工学専攻 工博 (正会員)
*4 北海道大学教授 大学院工学研究科社会基盤工学専攻 工博 (正会員)

造で接合部において鉄骨に穴を空け主筋・補強 筋を配筋するという作業をなくすことで施工性を 向上させるため鉄骨断面を小さくした試験体を1 体(SRC-13S),同様に柱SRC梁S造で施工性 を向上させるため接合部せん断補強筋の無い 試験体を1体(SRC/S-1-mh0),将来的に柱SC 梁S造とすることを目的とし、今回は確実に接合 部せん断破壊を起させるために接合部の柱主 筋とせん断補強筋の無い試験体を1体 (SRC/S-1-h0)の計3体を製作した。尚,試験体

表-1 コンクリートの力学的特性

1	~							
試驗休		$\sigma_{\rm B}$	$\sigma_{\rm t}$	$\epsilon_{\rm max}$	E _{1/3}	E _{2/3}		
予めて		(MPa)	(MPa)	(µ)	(GPa)	(GPa)		
SRC-135	3 31.3		9.63	2800	25.9	21.2		
SRC/S-1-m	nh0	31.7	9.29	2690	27.0	21.7		
SRC/S-1-l	n0	32.8	9.50	2650	27.5	22.2		
表-2 鉄筋の力学的特性								
计括	鉄筋径		$\sigma_{\rm y}$	ε,	伸び率	$\sigma_{\rm max}$		
竹悝			(MPa)	(μ ⁾	(%)	(MPa)		
SR345相当	á	6φ	362	1940	13.3	429		
SD685	D685 D10		700	4140	8.2	918		
SD345		D22	2 403 2240		16.3	589		
表-3 鋼板の力学的特性								
お毎	鋼板種別		$\sigma_{\rm y}$	ε,	伸び率	$\sigma_{\rm max}$		
17] 1里			(MPa)	(µ)	(%)	(MPa)		
SN490	PL	19	383	2252	26.8	540		
SN490	PL	16	383	2170	24.8	539		
SS400	PL	-9	304	1654	28.0	431		
SS400	PL	4.5	285	1596	27.2	410		
SS400	PL	6	303	1662	25.2	471		
SS400	PL	8	301	1500	32.1	437		
STKR400		-9	420	2210	14.5	459		
			-	•	-	-		

名は第1項が柱/梁部の構造,第2項が試験体 種別通し番号,第3項が接合部の構造を表して おり,mは柱主筋があることを,h0は接合部せん 断補強筋が無い事を示している。全試験体とも 接合部せん断破壊を想定し,接合部せん断耐 力が柱と梁の曲げ降伏時接合部せん断力よりも 下回るように設計した。SRC に内包した鉄骨の 負担分を明確にするために SRC/S-1-mh0,-h0 に内蔵した鉄骨と同形状の純鉄骨試験体(S-1B) についても加力実験を行った。

鉄骨は SRC-13S の梁に H-100×100×6×8, 柱に□-100×100×9 を用い, SRC/S-1-mh0, SRC/S-1-h0 及び S-1B の梁に BH-300×100× 4.5×19, 柱の加力方向に BH-200×100×4.5×

16, 直交方向にBH-200×100×4.5×9を用いた。 材質は PL-16 と PL-19 は SN490C とし, それ以 外は SS400 を使用した。鉄筋は柱主筋に 12-D10(SD685), 梁主筋に 8-D22(SD345), せん 断補強筋に 6 φ (SR345 相当)を使用した。コンク リート設計基準強度は全ての SRC 試験体に共 通して 30MPa を用いた。また、打設後試験体の 柱に生じたジャンカの補修を行ったが、試験部 位ではないので大きな影響は無いと考えられる。

2. 2 加力方法

加力は地震時における内柱梁接合部の応力 状態を再現するため上下柱に一定軸力 $(1/6 \cdot b \cdot D \cdot \sigma_B)$ を導入した後,柱頂部の反曲 点位置に強制水平変位を与える一方向正負漸 増繰り返し加力を行った。試験体の柱反曲点位 置をピン支持,梁の反曲点位置をピン・ローラー 支持とした。

加力制御は、±3 サイクルピーク時を接合部 終局せん断耐力計算値(SRC 規準式)の 80%に 至るように設定し, ±1,2 サイクルの加力はその 1/3 ずつ増分する荷重制御とし, ±4 サイクルは ±3 サイクルにおけるピーク変位の繰り返し加力 とした。それ以降のサイクルは、+3 サイクルピー ク時の柱頭変位δを基準変位として、ピーク変 位が n× \delta (n=2, 3, 4, 6)となるように n=2, 3, 4 は各2回, n=6, 8, 10は各1回とする変位制御 による繰り返し加力を行った。鉄骨のみの試験体 は、先行して行った SRC 試験体実験時に計測し た内部鉄骨の接合部せん断変形角で制御した。 計測方法は各ステップ毎に、荷重と反力および 柱,梁,接合部パネルの相対変位,主要位置で の鉄筋および鉄骨の歪などの計測を行い記録し た。

3. 実験結果と考察

3. 1破壊性状

図-3~5に最終破壊状況の例を示す。全 ての試験体で接合部せん断破壊を生じた。 SRC-13S は層間変形角($_{c}R=$)0~13×10⁻³rad で 梁曲げ亀裂が発生した。 $_{c}R=$ 1~2×10⁻³rad で接

図-3 最終破壊状況 (SRC-13S)

図-4 最終破壊状況 (SRC/S-1-mh0)

図-5 最終破壊状況 (SRC/S-1-h0) 合部せん断初亀裂が発生した後,接合部せん 断亀裂の発生が顕著となり, $cR=25 \times 10^{-3}$ rad 以 降に梁付け根の圧壊が見られ,最大耐力に達し た。最大耐力後は接合部コンクリートの剥落が生 じ耐力低下した。SRC/S-1-mh0,-h0 では cR=13~20×10⁻³rad に接合部せん断亀裂の発生が顕 著になり,上下柱の主筋に沿って亀裂が伸展し た。SRC/S-1-mh0 では $cR=33 \times 10^{-3}$ rad, SRC/S-1-h0 では $cR=25 \times 10^{-3}$ rad 以降に接合部 コンクリートの剥落が顕著となったが耐力の低下 は見られなかった。大変形時において接合部の コンクリートは加力方向へ膨らみ,柱主筋の無い SRC/S-1-h0 においてその膨らみは顕著である。

3.2 柱せん断力(_cの – 層間変形角(_cn)関係

形角(cR)関係のスケルトンカーブを示す。 SRC-1-W³⁾(柱十字形鋼, SRC 梁), SRC-7S²⁾(柱 H 形鋼, SRC 梁)は柱鉄骨十字形断面と柱鉄骨 H 形断面の規準試験体であり, それぞれ比較を 行なうために用いた。SRC-13S ではせん断初亀 裂の発生により初期剛性が低下した後,鉄筋降 伏(梁主筋, せん断補強筋)などによりに剛性が 低下し最大耐力に達し, その後接合部コンクリー トの剥落により耐力が低下したが顕著な耐力低 下は見られなかった。柱鉄骨がH形鋼であり,柱 鉄骨断面積値が近いSRC-7Sとの耐力に差は無 かった。このことから接合部鉄骨断面積を小さく しても実用に耐えうると考えられる。また, SRC/S-1-mh0,-h0 ではせん断初亀裂の発生によ り接合部初期剛性が低下した後, 接合部せん断 亀裂の拡幅, 柱梁鉄骨フランジと柱直交フランジ の降伏などにより剛性が低下し, それ以降耐力 はほぼ横這いとなり最大耐力を迎えた。 SRC/S-1-mh0,-h0 の推移はほぼ同じであるが、 cR=±10×10⁻³rad 以降の剛性低下の割合に差 があるので接合部柱主筋によるコンクリート拘束

効果の変形性能への影響は、少なからずあると考えられる。SRC-1-Wと比較すると耐力は低く推移しており、梁がS造となることにより接合部コンクリートの有効幅が小さくなると言える。

3.3 せん断耐力

表-5,表-6に接 合部せん断初亀裂発生 耐力及び終局せん断耐 力一覧,表-7に各耐 力算定式の説明,図-8に接合部終局せん断 耐力の実験値と計算値 の比較を示す。

(1) 接合部せん断初亀裂発生耐力

表-5によれば、実験値と計算値の対応は極めて悪かった。試験体 SRC/S-1-mh0 と

図-7 柱せん断カー層間変形角関係(2)

表一5 せん断初亀裂発生耐力一覧								
試験体名	$\sigma_{\rm B}$	_{exp.C} Q	c(kN)	1 = 0 (kN)	$_{exp.C}Q_c/_{cal.C}Q_c(kN)$			
	MPa	+	-		+			
SRC-13S	31.3	21.8	35.2	42.5	0.51	0.83		
SRC/S-1-mh0	31.7	68.9	54.0	85.4	0.81	0.63		
SRC/S-1-h0	32.8	57.4 50.0		86.3	0.67	0.58		
				Average	0.66	0.68		

表一6	終局せん断耐力-	-覧
-----	----------	----

	実験値		AIJ式	修正式		
試験体名	exp.CQu	$_{cal1.C}Q_{u}$	$_{exp.C}Q_u/_{cal1.C}Q_u$	cal2.CQu	$_{exp.C}Q_u/_{cal2.C}Q_u$	
	kN	kN		kN	_	
℁ SRC-1-W	188	151	1.25	169	1.11	
≫ SRC-7S	146	96	1.52	124	1.18	
SRC-13S	151	95	1.59	148	1.02	
SRC/S-1-mh0	153	168	0.91	188	0.81	
SRC/S-1-h0	150	158	0.95	176	0.85	
S-1B	111	112	0.99	95	1.16	
※過年度試験体		Average	1.20		1.02	

(注)網掛けの数値は、純鉄骨試験体なので計算値は各耐力式の RC 負担 項を 0 として計算した値である

接合部せん断初亀裂発生耐力 ¹⁾
$Q_{jc} = 0.1 \cdot \sigma_B \cdot_C b \cdot_{mC} d \cdot (1 + \beta)$
$\beta = (15_J t_w \cdot_{sC} d) / (_c b \cdot_{mC} d)$
$_{cal.C}Q_{c} = \left\{ \frac{1}{\left(l - \frac{1}{mC}d \right) \cdot h/l - 1} \right\} Q_{jc}$
接合部終局せん断耐力
$_{call,2.C}Q_{u} = \left\{ \frac{1}{\left(l - {}_{mC}d / {}_{mB}d\right) \cdot h/l - 1} \right\} Q_{ju}$
SRC 規準式 ¹⁾ (cal1)
$Q_{ju} = \left\{ V_e \left({}_j F_{s} \cdot {}_j \delta + {}_w p \cdot {}_w \sigma_y \right) + 1.2 {}_s V \cdot {}_s \sigma_y / \sqrt{3} \right\} / {}_{mB} d$
$_{c}V_{e} = _{c}b + _{B}b/2_{mB}d \cdot _{mc}d$
${}_{s}V = {}_{j}t_{w} \cdot {}_{sB}d \cdot {}_{sc}d + 2t_{f} \cdot b_{f} \cdot {}_{sB}d$
$_{j}F_{s} = \min(0.12F_{c}, 18 + 3.6F_{c}/100)$
修正式 ²⁾ (cal2)
$Q_{ju} = {}_{rc}Q_{j} + {}_{w}Q_{j} + 0.9{}_{g_{0}}Q_{j} + 0.5{}_{fr}Q_{j}$
$_{rc}Q_{j} = 0.84 \cdot \sigma_{B}^{0.81} \cdot cA$
$_{w}Q_{j} = _{sw}\sigma_{y}/\sqrt{3} \cdot A_{w}$
$_{f}Q_{j} = _{f}\sigma_{y}/\sqrt{3}\cdot A_{f}$

SRC/S-1-h0を比較すると, SRC/S-1-mh0のほう が実験値/計算値の値が大きいため, 柱主筋に よって若干ではあるが, 接合部のコンクリート拘 束効果があり, 接合部のせん断初亀裂の発生を 遅らせる事が出来ると考えられる。

(2) 接合部終局せん断耐力

図-8より実験値とSRC規準式による計算値 とを比較すると、柱鉄骨に角型鋼管を用いた場 合、実験値/計算値の値が AIJ 規準式では 1.59 と実験値を過小評価しているのに対し、修正式 では1.02となり、実験値と計算値の対応が良い。 このことから柱梁鉄骨断面を小さくしても修正式 で適切に評価できることが分かる。梁S造の試験 体では実験値において SRC/S-1-mh0 と SRC/S-1-h0 の差がわずかであることから、柱主 筋によるコンクリート拘束効果は耐力への影響が ほとんど無い事が分かる。また、AIJ 規準式と修 正式の計算値は共に実験値との対応が良いが、 危険側の評価となった。

表-8に、AIJ式と修正式によるRC 負担計算 値を示す。SRC 試験体の実験値と純鉄骨試験 体の実験値の差をRC 負担分とした。表-8より、 AIJ式ではRC 負担項の計算値に対する実験値

 $_{fr}Q_{i} = (\alpha \cdot b_{fr} \cdot t_{fr} \cdot t_{B} t_{fr} \cdot s_{B} t_{fr} \sigma_{B}) \cdot 1/mB} d$ (SRC 梁の場合) $_{fr}Q_j = (\alpha \cdot b_{fr} \cdot c_{fr} \cdot b_{fr} \cdot b_{fr} \sigma_B/4) \cdot 1/_{sB}d$ (S 梁の場合) _cQ:柱せん断力 Q_i :接合部せん断力 rcQi:RC部負担せん断力(kN) $_wQ_i$:接合部鉄骨ウェブのせん断力(kN) ₄Q₁:接合部鉄骨直交フランジのせん断力(kN) frQ_i :鉄骨枠効果せん断力(kN) A:柱梁接合部のコンクリート有効断面積(mm²) Aw: 接合部鉄骨ウェブの断面積(mm²) *b*fr: : 柱梁鉄骨フランジ幅(mm) ctfr.Btfr: 注 柱梁鉄骨フランジ厚(mm) σ_B:コンクリート圧縮強度(MPa) sw σ_v: 接合部鉄骨ウェブの降伏応力度(MPa) fov: 法合部鉄骨直交フランジの降伏応力度(MPa) Bfr σ_v:梁鉄骨フランジ降伏応力度(MPa) *α*:枠効果形状係数(ここでは *α* = 8)

その他の記号は SRC 規準と同じ

の比は 0.73, 修正式では 0.46 となり, どちらの場 合も RC 負担分を過大に評価している事が分か る。コンクリート負担項は, コンクリート有効断面 積の算定に AIJ 規準による接合部有効幅 (Cb/2)を使用している。そこで図-9に示すよう にパターン 1:梁鉄骨フランジ幅, パターン 2:最 大耐力以降でも殆ど損傷が見られなかったコン

試験体 。		有効断面積種別	パターン	接合部有効幅		接合部有効成		コンクリート 有効断面積	$_{cal.rcC}Q_{u} \\$	exp.rcCQu	exp.rcCQu
1	MPa			mm		mm		mm ²	kN	kN	cal.RCQcu
		鉄骨断面積含む	AIJ	_c b/2	150	mCd	213	31950	92.1		0.42
			1	_{sB} b	100	mCd	213	21300	61.4		0.64
			2	$A = d_1 \times_{sC} d - 2 \times 50 \times (d_1 - 50)$			0)	57990	167.2		0.23
SRC/S-1-mh0	32.2		3	$(_{sB}b+b_{f})/2$	150	mCd	213	31950	92.1	39	0.42
		鉄骨断面積含まず	1	_{sB} b	100	mCd	213	16690	48.1		0.81
			2	-	-	-	-	56190	162.0		0.24
			3	$(_{sB}b+b_{f})/2$	150	mCd	213	27120	78.2		0.50
SRC/S-1-h0	31.7	鉄骨断面積含む	AIJ	_c b/2	150	_{sC} d	168	25200	72.7		0.58
			1	_{sB} b	100	_{sC} d	168	16800	48.4		0.87
			2	$A=d_1\times_{sC}d-2\times50\times(d_1-50)$		0)	57990	167.2		0.25	
			3	$(_{sB}b+b_f)/2$	150	_{sC} d	168	25200	72.7	42	0.58
		鉄骨断面積含まず	1	_{sB} b	100	_{sC} d	168	15590	45.0		0.93
			2	-	-	-	-	56190	162.0		0.26
					3	$(_{sB}b+b_f)/2$	150	_{sC} d	168	23770	68.5

表-9 コンクリート有効幅検討

クリート断面を有効断面積としたもの,3:直交フ ランジ間距離と梁フランジ幅の平均値を有効幅 として使用したもの,これら3通りの仮定をして計 算を行ったところ,表-9に示したように,1の場 合でかつ,鉄骨フランジ・鉄骨ウェブ断面積を差 し引いて純コンクリート断面積を使用した場合, SRC/S-1-mh0では0.81, SRC/S-1-h0では0.93 と,よりコンクリート負担項を正しく評価できた。た だし,試験体数が2体のみであることから今後更 なる検討が必要である。

4. 結語

SRC 造及び柱 SRC 梁 S 造における柱梁接合 部のせん断抵抗性状の把握を目的にして水平 加力実験を行なった結果,以下の知見を得た。

- 施工性を向上させた柱梁接合部終局せん断 耐力の計算値は,柱梁鉄骨に小断面を用い た場合も既往の修正式で適切に評価できる。 小断面鉄骨を使用しても,規準試験体と比 較して顕著な耐力低下が見られなかった。
- 2) 梁 S 造で接合部の梁主筋および接合部せん 断補強筋を無くした場合, *cR*=50×10⁻³rad 以 下では耐力低下は観察されなかった。現実の 内柱梁接合部には直交梁が存在するため, 更に高い耐力を持つ事が予想され, 実用に耐 える施工法であると考えられる。また修正式に おいて, 梁 S 造の場合でも有効幅を考慮する 事でより適切に評価できると考えられる。

謝辞

試験体の補修にあたり、㈱北海道サンキットに 多大なご協力を頂いた。

参考文献

- 1) 日本建築学会 :「鉄骨鉄筋コンクリート構造設計規準・同解説」,2001
- 北野 敦則,城 攻 : SRC 造内柱梁接合 部のせん断耐力算定に関する実験的検討, コンクリート工学年次論文集, Vol.26,No.2,pp.1429~1434,2004
- 横山 隆明,北野 敦則ほか: SRC 造内 柱梁接合部のせん断抵抗性能に及ぼす水 平断面形状の影響(その1,その2),日本建 築学会大会学術講演梗概集(関東),C 構 造 2, pp.377~380, 1993.9