論文 コンクリート充填円形鋼管柱の経験部材角と残留変形角の関係

城戸 將江^{*1}·津田 惠吾^{*2}

要旨:既往のコンクリート充填円形鋼管柱の実験資料を用いて,経験部材角と残留変形角お よび損傷限界部材角との関係を検討した。その結果以下のことがわかった。1)軸力比が大 きくなるにつれ,残留変形角が大きくなる傾向にある。2)高軸力の範囲では径厚比が大き くなるにつれ,残留変形角が大きくなる傾向にある。3)軸縮み限界をこえると残留変形角 が増大する傾向にある。

キーワード:合成柱,復元力特性,損傷限界,残留変形角,性能設計

1. はじめに

コンクリート充填鋼管柱(以下 CFT 柱)は, 一般的な鉄骨柱や鉄筋コンクリート柱に比較す ると,エネルギー吸収能力に優れる,柱断面を 小さくできるなどの利点を持っており,超高層 建築物などに利用されている。

しかし, CFT 柱材の復元力特性は骨格曲線が 提案されているだけであり, 履歴則に関しては ほとんど検討されておらず, ノーマルトリリニ ア型復元力特性が用いられているのが現状であ る。

CFT 柱材の復元力特性に影響を与える因子と して,径厚比・幅厚比,軸力比,座屈長さ・せ い比などが考えられるが¹⁾,これらの影響を考慮 できる復元力特性を定式化する必要がある。

また,構造物の構造性能について明らかにす ることは性能設計を進める上で必須である。文 献2)では,一定軸力下で正負繰返し曲げを受け る CFT 柱材の構造性能を検討し,軸力の影響を 明らかにする目的で実験を行っている。また, 損傷限界部材角として,局部座屈発生限界部材 角,軸縮み限界部材角,全塑性限界部材角,耐 力保証限界部材角,を定義し,それらの関係を 比較し,軸力比と耐力保証限界部材角との関係 およびその評価式を示している。 大地震を受けた建築物は部材が塑性化し,震 災後に残留変形が生じるものもあるが,残留変 形は建築物の修復性にかかわるため,それらを 定量的に把握することは,性能設計において有 用であると考えられる。

本論文の目的は,1)CFT 柱の復元力特性を定 式化する第1歩として,文献2)に示されている CFT 柱の実験資料を用いて,経験部材角と除荷 後の残留変形角との関係を明らかにし,2)経験部 材角,残留変形角および損傷限界部材角の関係 について調べ,3)残留変形角におよぼす軸力比, 径厚比の影響を明らかにするものである。

2. 文献 2)の実験の概要および損傷限界部材角 2.1 文献 2)の実験の概要

検討に用いた実験の概要について以下に記す。 荷重条件は図-1に示すように材長 *L* で一端固 定,他端自由の片持ち柱である。柱の断面は円 形であり,実験変数は,1)鋼管の径厚比 D/t (*D*: 断面の径, *t*:管厚),2)軸力比 n (= N/N_0 , N:載 荷軸力, N_0 圧縮耐力, **表**-1注)参照),3)コン クリート充填の有無,である。試験体一覧を表 -1に示す。本論文では,コンクリート充填の 試験体について検討を行ったため,該当する試 験体のみを示している。

*1 北九州市立大学大学院 国際環境工学研究科環境工学専攻 (正会員)*2 北九州市立大学 国際環境工学部教授 工博 (正会員)

図-1 載荷条件

表-1 試験体一覧

シリ	試験体名	コンクリート	圧縮耐力	載荷軸力
ーズ		強度 $_{c}\sigma_{B}(N/mm^{2})$	<i>N</i> ₀ (kN)	$N/N_0(=n)$
	C33C20C	33.4	604	0.20
	C33C30C			0.30
	C33C40C	31.9	593	0.40
C33	C33C50C			0.50
	C33C60C			0.60
	C33C70C	33.4	604	0.70
	C33C80C			0.80
	C39C20C	30.9	516	0.20
	C39C30C			0.30
	C39C40C			0.40
C39	C39C50C	33.5	535	0.50
	C39C60C			0.60
	C39C70C	30.9	516	0.70
	C39C80C			0.80
	C77C20C			0.20
	C77C30C			0.30
C77	C77C40C	32.4	377	0.40
	C77C50C			0.50
	C77C60C			0.60
	C77C70C			0.70
	C77C80C			0.80

注) $N_0 = A \sigma_v + A_c \sigma_B$

 $\sigma_{y}:$ 鋼管の降伏応力度

また,載荷プログラムは $\mathbf{2}$ ー**2**に示すように正 負漸増繰返し載荷であり,柱の部材角R(= δ/L , δ :柱頭の水平変位)は0.25%刻みで増加させ,同 じ変位振幅で4回の繰返し載荷を行っている。

実験に用いられた鋼管は STK400 の円形鋼管 101.6mm Øを柱脚より 200mm 削り出して,所定の 径厚比としている。残留応力除去のための熱処 理は行っていない。試験体の形状・寸法を図-3に,鋼管の実測寸法を表-2に,引張試験結 果を表-3に示す。

2.2 損傷限界部材角

文献 2) では、せん断力 Q-部材角R 関係の正 側の除荷点を結んで得られた包絡線上で、耐力 が最大耐力の 95%に低下したときの部材角を耐 力保証限界部材角と定義している。

また,視察により局部座屈が確認された,つ

表-2 鋼管の実測寸法

シリーズ	断面せい	断面せい 管厚 径厚比		断面積		
	D(mm)	・ 官厚 往厚 れ(mm) D/ 3.01 33. 2.55 28	D/t	$_{s}A(\text{mm}^{2})$		
C33	100.0	3.01	33.3	920		
C39	99.0	2.55	38.8	770		
C77	96.0	1.25	76.7	370		

表-3 引張試験結果

シ	リ	降伏応力度	引張強さ	降伏比	ひずみ硬化開始時 ひずみ度	破断伸び
	`^	$\sigma_y (\text{N/mm}^2)$	$\sigma_u (\text{N/mm}^2)$	σ_{y}/σ_{u} (%)	$\mathcal{E}_{st}(\%)$	EL (%)
C.	33	406	488	83.2	0.88	25.1
C.	39	391	477	81.9	-	21.9
C	77	410	490	83.8	-	29.3

sA:鋼管の断面積, cA:コンクリートの断面積,

まり実際に試験体の鋼管表面に触れてみて変化 が確認された最初の部材角を局部座屈発生限界 部材角としている。さらに、軸ひずみ度が 0.2% を超える部材角を軸縮み限界部材角、柱脚断面 のモーメントが全塑性モーメントまで低下した ときの部材角を全塑性限界部材角と定義してい る。D/t=33 および 77 のときの各損傷限界部材角 を示すグラフを図-4に示す²⁾。

3. 経験部材角,残留変形角および損傷限界部材 角の関係

せん断力と部材角の関係を示す模式図を図-5に示す。実験より得られた荷重-変形曲線から,各制御変位(ここでは変位反転点)に相当 する経験部材角 R₀と除荷後の残留変形角 R_rの値 を実験データより読み取った。

3.1 実験結果

図-6,図-7にそれぞれ,2.1に示した実験 より得られた D/r=33 および 77の試験体のうち, 軸力比がそれぞれ 0.3, 0.5, 0.7 のコンクリート 充填試験体のせん断力 Q-部材角 R 関係を示す。 図中,破線は塑性崩壊機構直線である。また, □印は最外縁のひずみ度がはじめて引張試験に より得られた降伏ひずみ度に達した点,◇印は 加力正側,負側におけるせん断力最大の点,▼ 印は鋼管に亀裂が発生した点,↓で示した点は 視察によって最初に局部座屈が確認された点で ある。

図-6 経験部材角と残留変形角の関係 (D/t =33)

0.3 のときを■, 0.5 のときを○, 0.7 のときを● で示している。 図-6~図-8によると軸力 比が大きくなるにつれ,経験部材角が小さな範 囲においても残留変形が生じるようになること が観察される。また, 軸力比が大きくなるにつ れ, 残留変形が大きくなる傾向にある。

示す。図-8では軸力比が

図-9に,残留変形に対する径厚比の影響を 示す。径厚比が 33 のときを■,39 のときを○, 77 のときを●で示している。この図によると,径 厚比が 33,39 の場合はほぼ同じ残留変形が生じ ており,大きな違いは見られないが,径厚比が 77 の場合はより大きな残留変形が生じている。

3.3 経験部材角と損傷限界部材角 との関係

損傷限界部材角と残留変形角と の関係を調べるために、図ー6, 7の*R*₀-*R*_rグラフ内に, a.軸縮み 限界, b.局部座屈限界, c.耐力保証 限界, d.全塑性耐力限界を矢印で 示した。

これらの図によるとD/t=33の場 合,軸力比が0.4以上(n=0.4のグ ラフは紙面の都合上掲載していな い)の場合は軸縮み限界部材角 a に達すると残留変形が増大してい く傾向にあることがわかった。ま たD/t=77の場合においても軸力比 が0.4以上の場合は軸縮み限界部 材角 a および局部座屈発生限界部 材角 b に達すると残留変形が増大 していく傾向にあることがわかっ た。

3.4 修復性と残留変形角

性能設計においては目標性能を 工学量で表すことが必要になるが, 性能を保証する限界値として文献 3)では建物については層間変形角 を規定している。 $\mathbf{a} - \mathbf{4}$ に建物の 状態とそれに対応する限界値を示 す。本論文で検討しているのは柱 部材のみであるが,経験部材角が 各限界値 1/200, 1/150, 1/100, 1/75 のとき,またその限界値をこえた 1/50 のときのコンクリート充填試 験体の残留変形角を $\mathbf{a} - \mathbf{5}$ に示し ている。 $R_0 = 1/150$, 1/75 について は対応する実験データが存在しな

いので線形補間することで求めた。網掛けをし ているデータは軸縮み限界に達した範囲である。

また, **表**-5をグラフ化したものを図-10 に 示す。図中, C33 シリーズの試験体は●で, C39 シリーズ試験体は■で, C77 シリーズ試験体は

表-4 修復性と限界値 3)

稀に作用	極めて稀に作用する荷重				
する荷重					
機能維持	主要機能確保	指定機能確保	人命保護		
無被害	軽微な修復	小破	限定機能確保		
修復不要	軽微な修復	小規模修復	中破~大破		
			中~大規模修		
$R \le 1/200$	<i>R</i> ≦1/150	$R \le 1/100$	$R \le 1/75$		

R: 層間変形角 (Rad)

長-5 残留変形角

衣一5 残留変形用						
计除休夕	п	各部材角に対する残留変形角 R _r (%)				
武贵中石		$R_0 = 1/200$	$R_0 = 1/150$	$R_0 = 1/100$	R ₀ =1/75	$R_0 = 1/50$
C33C20C	0.2	0.024	0.043	0.118	0.352	0.935
C33C30C	0.3	0.002	0.022	0.121	0.355	0.961
C33C40C	0.4	0.031	0.060	0.170	0.415	1.038
C33C50C	0.5	0.043	0.077	0.213	0.480	1.076
C33C60C	0.6	0.048	0.116	0.290	0.538	1.124
C33C70C	0.7	0.121	0.228	0.395	0.673	1.369
C33C80C	0.8	0.191	0.338	0.545	0.856	-
C39C20C	0.2	0.024	0.043	0.130	0.377	0.933
C39C30C	0.3	0.019	0.048	0.140	0.391	0.962
C39C40C	0.4	0.016	0.038	0.150	0.418	1.022
C39C50C	0.5	0.038	0.074	0.197	0.458	1.050
C39C60C	0.6	0.077	0.142	0.298	0.576	1.200
C39C70C	0.7	0.068	0.148	0.324	0.606	1.237
C39C80C	0.8	0.122	0.237	0.442	0.765	-
C77C20C	0.2	0.030	0.058	0.156	0.407	1.045
C77C30C	0.3	0.023	0.055	0.169	0.441	1.125
C77C40C	0.4	0.047	0.086	0.209	0.500	1.180
C77C50C	0.5	0.063	0.123	0.281	0.593	1.208
C77C60C	0.6	0.098	0.182	0.349	0.654	1.311
C77C70C	0.7	0.127	0.240	0.467	0.897	1.649
C77C80C	0.8	0.196	0.347	0.734	_	_

網掛け部分は軸縮み限界に達した範囲である.

○で示している。

表-5および図-10 によると経験部材角が 1/200 の場合は 0%~0.20%ほどの残留変形が生 じていることがわかる。軸力比が高くなるほど 残留変形が大きくなる傾向にあるが, 径厚比に

よる影響はあまり見られな い。

経験部材角が 1/75 の場合 については約 0.35%~0.90% の残留変形が生じている。軸 力比が 0.2 のときは径厚比に よる違いはほとんどみられ ないが,高軸力の範囲になる と,径厚比が大きくなるにつ れ残留変形角が大きくなっ ていることがわかる。

また,経験部材角が 1/50 の場合については軸 カ比 0.2 以外のすべての試験体で軸縮み限界に 達しており,残留変形角が 0.93%~1.65%生じて いる。

しかし前述したように,これらの値は建物の 層間変形に対する限界値を部材にあてはめて求 めた残留変形角である。実際の骨組における残 留変形角については今後検討を続ける必要があ る。

4. まとめ

文献 2) に示されている円形 CFT 柱の実験結 果を用いて,経験部材角と残留変形角との関係 および残留変形角と損傷限界部材角との関係を 調べた結果,以下のことがわかった。

- 1)軸力比が大きくなるにつれ,経験部材角が小さ な範囲においても残留変形が生じるようにな る。
- 2)高軸力の範囲においては径厚比が大きくなる と残留変形が大きくなる傾向にある。

3) D/t=33 の場合,軸力比が 0.4 以上の場合は軸 縮み限界部材角に達すると,また D/t=77 の場合 においても軸力比が 0.4 以上の場合は軸縮み限 界部材角および局部座屈発生限界部材角に達す ると残留変形が増大していく傾向にある。

今後は,角形 CFT 柱についても同様な検討を 行う予定である。また,円形 CFT 柱の復元力特 性の定式化を進めていきたいと考えている。

参考文献

- 1)日本建築学会:鉄骨鉄筋コンクリート構造計算 規準・同解説, 2001.1.
- 2)松井千秋,津田恵吾,河野昭彦,山地雄二郎, 藤永隆:コンクリート充填円形鋼管柱の構造性 能と軸力制限値,日本建築学会構造系論文集, 第 512 号, pp.181-188, 1998.10.
- 3)日本建築構造技術者協会編:建築の構造設計, オーム社, 2004.