論文 段差のついたコンクリート表面における連続繊維シートの付着性状

金久保 利之*1·八十島 章*2·谷垣 正治*3

要旨:連続繊維シートとコンクリートのせん断-剥離複合付着特性を検討する上での基礎的 資料を得ることを目的として,試験体中央部に段差を設けた二面せん断型付着試験体による 付着実験を行った。実験因子は段差レベル,繊維種類およびシート厚である。実験の結果, 本試験体を用いることによって,剥離付着が支配的な性状からせん断付着が支配的な性状に 移行していく,せん断-剥離複合付着性状を確認することができた。付着強度は段差レベル の違いによる差が顕著であり,シートの剥離角度で表現される付着強度算定法を提案した。 この方法による計算値は,おおむね実験結果を表現できた。

キーワード:繊維シート、剥離付着、せん断付着、剥離角度、付着強度、付着長

1. はじめに

コンクリート構造物の連続繊維シート(以下, シート)による貼付補強においては、シートと コンクリート間の付着特性が重要な因子となる 場合がある。この場合、多くは「せん断付着特 性」が支配的となるが、押抜きせん断のように 直接的にシート面外に荷重が作用する場合や、 部材中のせん断ひび割れ近傍等では「剥離付着 特性」の影響が考えられる¹⁾。破壊力学では「せ ん断付着特性」を Mode II、「剥離付着特性」を Mode I として扱っているが、部材レベルの巨視 的な特性においては、両者が混在してシートの 付着特性に影響を与えていると考えられる。

シートとコンクリートの「剥離付着特性」に 関する研究は、呉らの研究²⁾や三井らの研究³⁾ に見られるが、実験技術上困難なこともあり、 「せん断付着特性」に関する研究と比較して大 幅に少ない。また、巨視的に見て、両者の特性 が混在する場合に着目した研究はほとんどない。 本報では、「せん断付着特性」実験の際に用いら れる二面せん断型付着試験体を用いて容易に実 験ができる加力方法を採用し、せん断ー剥離複 合付着特性を検討する上での基礎的資料を得る ことを目的として,加力実験を行った。「せん断 付着特性」も微視的に見れば Mode I のコンクリ ートの破壊であるといえるが,本報では実験結 果を巨視的にとらえることに重点を置き,主と して部材特性を支配するであろう付着強度に関 して検討を行った。

2. 実験概要

2.1 試験体

基本となる試験体は、「せん断付着特性」実験 の際に用いられる二面せん断型付着試験体で、 100×100×600mmのコンクリートブロックにシ ートを貼付したものである。コンクリートブロ ック中央部にあらかじめ切欠きを設け、シート 貼付後ハンマーにて初亀裂を導入し、試験体中 央部においてはシートのみが引張力を負担する。

試験体を図-1に示す。せん断-剥離複合付着 特性を検討する目的で,試験体中央部に「段差」 を設け,段差レベルを主要変動因子とした。段 差の程度は軸方向区間 30mm に対して,30,15, 10,5mm と設定した。軸方向に対するシート貼 付角度*θ_{ini}*は,tan*θ_{ini}*でそれぞれ 1.00(45°),0.50 (27°),0.33(18°),0.17(10°)である。

*1 筑波大学 大学院システム情報工学研究科助教授 博士(工学) (正会員)

*2 筑波大学 大学院システム情報工学研究科 修士(工学) (正会員)

*3 三井住友建設(株) 技術研究所建築研究開発部室長 工博 (正会員)

段差部詳細

図-1 試験体

衣一I 武缺体一見								
3/11		コンカ	繊維シート*				段差レベル	
レン	、試験体名	リート	繊維種粕	シート種類	設計厚	弾性係数	段差	角度
<i>·</i> · ·		<i></i>	心以小庄1里大只		(mm)	(GPa)	(mm)	$\tan \theta_{ini}$
	A106-30	 圧縮強度 20.6MPa 割裂強度 2.26MPa 	アラミド1	60 トンクラス	0.415	118	30	1.00
1	A106-15						15	0.50
	A112-30			120 トンクラス	0.830		30	1.00
	A112-15						15	0.50
	A206-15		アラミド2	60 トンクラス	0.350	78	15	0.50
	C300-15		炭素	目付量 300g/m ²	0.167	230	15	0.50
	A106-10	E縮強度 37.3MPa 割裂強度 2.74MPa	アラミド1	60 トンクラス	0.415	118	10	0.33
2	A106-05						5	0.17
	A206-05		アラミド2		0.350	78	5	0.17

* シートの物性値は公称値、プライマー、パテ、含浸樹脂にはエポキシ樹脂を使用

試験体の一覧を表-1に示す。その他の変動因 子は、繊維種類(アラミド1,アラミド2,炭素), シート厚およびコンクリート強度である。コン クリートの加力時材令における圧縮強度は、シ リーズ1およびシリーズ2試験体で、それぞれ 20.6MPa、37.3MPaであった。なお、シート貼付 幅はすべて50mmである。また、段差上部(図 -1中、右側)のコンクリートブロックに貼付し たシートには直交方向にシートを増貼りし、シ ートの剥離を抑制した。同一の変動因子で各3 体ずつ、計27体の加力を行った。

2.2 加力·計測方法

加力は変位制御万能試験機を用いて,単調に 引張載荷を行った。変位計測は,試験体中央部 のひび割れ開口幅を,電気式変位計を用いて行 った。同一変動因子各3体のうちの1体には, シート片面に15mm間隔で歪ゲージを貼付し, シートの歪計測を行った。

3. 実験結果

3.1 破壊経過および最大荷重

各試験体とも,引張荷重の小さいうちからシ ートの剥離が試験体中央部から進行し,ひび割 れ幅が拡大した。特に段差レベルの大きい試験 体(30mm)では,引張荷重がほぼ一定のまま剥

図-2 破壊後の状況 (A106-15)

	繊維シート			仍主	剥離付着	最大引張	付着	付着強度	実験値
試験体	话哲	設計厚	弾性係数	权定 (mm)	強度 ^{*1}	荷重	強度 ^{*2}	計算值*3	/
	性积	(mm)	(GPa)	(IIIII)	(N/mm)	(kN)	(N/mm)	(N/mm)	計算値
A106-30	7ラミド1	0.415	- 118	30	18.1	9.75	97.5	304	0.32
A106-15		0.415		15	34.5	16.66	166.6		0.55
A112-30		0.830		30	21.4	10.37	103.7	430	0.24
A112-15		0.830		15	39.3	17.39	173.9		0.40
A206-15	アラミト 2	0.350	78	15	32.0	16.26	162.6	227	0.72
C300-15	炭素	0.167	230	15	21.7	14.88	148.8	269	0.55
A106-10	アラミト 1	ブミト゛1 0.415	118	10	-	14.34	143.4	321	0.45
A106-05				5	-	21.43	214.3		0.67
A206-05	アラミト 2	0.350	78	5	-	17.40	174.0	240	0.73

表-2 実験結果一覧

*1:荷重が変化せずひび割れ幅が増大する区間の,単位幅の荷重の平均値 *2:単位幅の荷重の最大値 *3:段差がない場合の付着強度の計算値(単位幅) 注:実験値は3体の試験体の平均値

離が進行し,ひび割れ幅が 5mm 程度まで拡大し た。その後引張荷重が増大し始め,最大荷重に 達すると同時にシート全面が剥離した。

破壊後の状況例を図-2に示す。右側が試験体 中央部(段差側)で、中央部ではコンクリート 表面(樹脂界面)での剥離が進行し、端部に進 むにしたがってせん断付着破壊時によく観察さ れるコンクリート表層内部での破壊に移行して いく様子が見られる。

実験結果の一覧を, 表-2に示す。剥離付着強 度は後述する。付着強度の実験値は,引張荷重 の最大値を全シート幅(50mm×2面)で除し, 単位幅あたりの荷重として示した。付着強度は 段差レベルの違いの影響が顕著で,例えばアラ ミド1の試験体間で比較すると,段差レベルが 小さくなるほど付着強度が大きくなる傾向が伺 える。ただし,A106-10試験体の強度がA106-15 試験体の強度より低下した理由は不明である。

各試験体の付着強度を,段差がない場合の付 着強度と比較するために,以下に示すせん断付 着強度式⁴⁾を用いた計算値と比較した。

$$l_e = \sqrt{\frac{2 \cdot \lambda_f \cdot s_e}{k_e}} \tag{1}$$

$$\begin{split} l_{b} & \geq l_{e} \mathcal{O} \succeq \mathring{\Rightarrow}, \\ P_{max} &= k_{e} \cdot \tau_{b,max} \cdot b_{f} \cdot l_{e} \end{split} \tag{2}$$

$$l_{b} < l_{e} \mathcal{O} \succeq \grave{\Rightarrow},$$

$$P_{max} = k \cdot \tau_{b max} \cdot b_{f} \cdot l_{e}$$
(3)

$$k = \frac{1 - k_e}{2} \cdot \cos\left(\frac{l_b}{l_e}\pi\right) + \frac{1 + k_e}{2} \tag{4}$$

ここで,

l_e	:有効付着長
λ_f	:シート付着指標=tf・Ef/T _{b,max}
S_e	:有効付着域のすべり量=0.354mm
k _e	:有効付着長時の応力係数=0.428
l_b	: 付着長
P_{max}	: 付着強度
$\tau_{b,max}$:局所最大付着応力= $3.5\sigma_B^{0.19}$
b_f	: シート幅
k	: 応力係数
t_f	: シート厚
E_f	:シート弾性係数
$\sigma_{\scriptscriptstyle B}$:コンクリート圧縮強度(MPa)

本強度式は、付着長が有効付着長より大きい 場合と小さい場合とで適用式が異なり、本試験 体の付着長300mmをそのまま用いて計算すると、 付着長が有効付着長より大きい場合に当てはま る。実験値と計算値を比較すると、段差レベル が 30mm で実験値は計算値の 30%程度, 15mm で 40~70%程度である。

3.2 荷重-ひび割れ幅関係および歪分布

A106-30, A106-15, A106-05 試験体の引張荷 重-ひび割れ幅関係およびシートの歪分布を, 図-3 に示す。引張荷重-ひび割れ幅関係は同-因子 3 体の試験体の結果を, 歪分布はその中の 歪ゲージを貼付した試験体の結果を示している。

図中の●, ■, ▲のプロット点は,引張荷重-ひび割れ幅関係における同プロット測定点での 歪分布を示している。

A106-30, A106-15 試験体(段差レベルそれぞ れ 30mm, 15mm)の引張荷重-ひび割れ幅関係 は特徴的で,引張荷重がほぼ一定値を示しひび 割れ幅のみが増大する区間が観察される。この 区間は前節で述べた, コンクリート表面(樹脂 界面)での剥離が進行する領域と対応している。 この区間の荷重を剥離付着特性が支配的な領域 と見て, 剥離付着強度と定義した。具体的には, 段差レベル 30mm の試験体ではひび割れ幅 1mm ~3mm の区間の荷重値の平均値, 15mm の試験 体では 0.5mm~1mm の区間の平均値として算出 した。また、歪分布では圧縮歪が多く観察され る。これは、剥離が丁度進行している箇所で樹 脂含浸したシートに曲げ変形が作用し、歪ゲー ジを貼付したシート表面が圧縮になった場合に 見られるものと考えられる。すなわち、試験体 中央部から圧縮歪が見られる箇所まではシート が剥離していると考えられる。

一方, A106-05 試験体(段差レベル 5mm)の

引張荷重-ひび割れ幅関係や歪分布を見ると, 段差レベルが小さいほどせん断付着特性時に見 られる現象と近づいている様子が伺える。なお, これらの試験体では荷重が一定の領域を特定す ることが困難なため,剥離付着強度は算出して いない。

4. せん断ー剥離複合付着強度

4.1 段差レベル・シート剛性の影響

せん断付着特性は、シートの剛性(シート厚 ×弾性係数)に強い影響を受け、特に有効付着 長の大小により付着強度が変化する⁴⁾。せん断-剥離複合付着強度においても同様のことが考え られる。

剥離付着強度および付着強度とシート剛性の 関係を、図-4に示す。両強度において顕著に差 が見られる因子は段差レベルで、同一シート間 で比較すると、段差レベル 30mm の試験体の強 度は 15mm の試験体の 50~60%程度である。一 方、同一段差レベルの試験体間でシート剛性の 影響を見ると、同一繊維種類のシート間では、 若干ではあるが剛性が大きいほど付着強度も大 きい傾向がある。せん断-剥離複合付着強度に おいても、ある程度はシート剛性が影響するよ うである。

4.2 剥離角度と付着荷重

3章で述べたように, 剥離が進行することによ ってシートが引張力を受ける角度が小さくなり, シートの付着性状が, 剥離付着型からせん断付 着型に移行していき, 付着荷重が増大していく と考えられる。

図-5に示すように、 歪分布で最小の 歪値(圧 縮歪)が測定された場所を剥離箇所とし、 試験 体中央部から剥離箇所までの長さをシート剥離 領域とする。シート剥離領域ではシートが直線 状になると仮定して、 段差レベルとシート剥離 長 (l_p) からなる角度を剥離角度 (θ_p) と定義す る。剥離角度によって、 剥離付着型とせん断付 着型の付着性状の割合が変化すると考える。 剥 離角度が 90°であれば「剥離付着特性」、 0°で あれば「せん断付着特性」となる。なお、本報 で指す付着荷重とは、シート引張力の試験体軸 方向成分力である。 剥離角度と付着荷重の関係を、図-6に示す。 剥離付着強度もシート剛性の影響を若干受ける ようであるので、その影響を考慮し、前述のせ ん断付着強度計算値(付着長は300mmとして計 算)で除して基準化した。また、段差レベル10mm および5mmの試験体では、歪分布における最小 歪箇所の特定が困難であったので(せん断付着 特性が支配的で、明確な圧縮歪発生点が特定し にくい)省いた。図より、段差レベルやシート 種類の違いに関わらず、剥離角度と付着荷重に ほぼ同様な反比例の関係が見られ、最小二乗法 により図中に示す関係を得た。初期の段差レベ ルには関係なく、シート剥離は同様な過程を経 て発生し、剥離が進行すると一気に全体剥離が 生じると考えられる。

図-6 剥離角度と付着荷重の関係

4.3 本試験体の付着強度

図-6より, 段差レベルが 15mm の試験体では, 最終的に剥離角度が tan *θ*_p=0.06 程度に達してお り、このときのシート剥離長(*l_p*)は 250mm 程 度になる。本試験体の場合、付着長が 300mm で あるので、このときのシート付着領域は 50mm となり、せん断付着特性における有効付着長を 下回ることになる。せん断付着強度(荷重値) は、付着長が有効付着長より小さい場合、付着 長の減少にともなって小さくなる⁴⁾。本試験体の 場合、剥離が進行してシート付着領域が減少し、 付着荷重がせん断付着強度に達したときに一気 に全体剥離に至ったと考えられる。

以上の検討より本試験体の付着強度は、剥離 角度で表される付着荷重値と、剥離角度から求 まるシート付着長により算出されるせん断付着 強度の交点を求めることによって、おおよそ求 めることができると考えられる。せん断付着強 度の計算値に、前述の計算式を用い、上記の方 法による付着強度の導出を、A10630 および A10615 試験体について行った例を、横軸に剥離 角度、縦軸に付着荷重をプロットして、図-7 に 示す。A10630 試験体では交点の y 値が 0.27, A10615 試験体では 0.51 となり、表-2 に示され る比較値とほぼ一致している。

段差レベル 30mm, 15mm の試験体の付着強度 を、実験結果と比較して表-3に示す。本方法に よる付着強度の導出は、おおむね実験結果と適 合している。

5. まとめ

- 段差を設けた二面せん断型付着試験体を用いることによって、せん断ー剥離複合付着性状を確認できた。
- 2) この場合の付着強度は、段差レベルの違いに よる差が顕著であった。
- シートの剥離角度で表現される付着強度算 定法を提案した。この方法による計算値は、 おおむね実験結果を表現できた。

謝辞

本研究は、アラミド補強研究会建築委員会で

図-7 付着強度の導出方法

表-3 付着強度導出方法の適合性

	せん断	実験値/		
試験体	付着強度 計算値 (N/mm)	実験に よる値	4.3 の 導出法	比較値
A106-30	304	0.32	0.27	1.20
A106-15	504	0.55	0.51	1.08
A112-30	420	0.24	0.26	0.92
A112-15	430	0.40	0.49	0.82
A206-15	227	0.72	0.52	1.37
C300-15	269	0.55	0.51	1.07

の研究活動の一環として実施されたものである。 関係各位に感謝いたします。

参考文献

- 日本コンクリート工学協会:コンクリート構 造物の補強技術研究委員会報告書, pp.4-7, 2003.7
- 呉 智深ほか:連続繊維シートの貼付による コンクリート片の剥落防止効果に関する実 験的・解析的研究,土木学会論文集, No.662, V-49, pp.45-58, 2000.11
- 三井雅一,福澤公夫,車田 亮:FRP シート・ コンクリート間のはく離付着特性,材料,第 50巻,第11号,pp.1276-1281,2001
- 4) 金久保利之,古田智基,福山洋:等価付着 ストレスブロックによる連続繊維シートと コンクリートの付着強度算定式,コンクリー ト工学論文集,第12巻,第3号,pp.27-37, 2001.9