論文 アルカリ骨材反応が生じた鉄筋コンクリート構造物の実機試験及び シミュレーション解析

高倉 正晴*1・渡部 雄一*2・細川 高志*3・日比野 浩*4

要旨:アルカリ骨材反応(ASR)による膨張やひび割れが発生した伊方発電所1号機タービン架台について,地震荷重に対する安全裕度を把握するための検討の一環として,振動試験,弾性波測定試験及びシミュレーション解析を実施し,過去に実施した試験結果と比較しながら,コンクリート構造体としての弾性係数を検討した。その結果,架台上部での弾性係数の低下は顕著であるが,1989年以降の低下は小さいことが分かった。

キーワード:アルカリ骨材反応,弾性係数,振動試験,シミュレーション解析

1. はじめに

アルカリ骨材反応(以下「ASR」という)に ついては、数多くの研究がなされており、ASR が発生したコンクリート部材の力学特性は、軸 方向筋の拘束等に影響される^{例えば1)}ことが知ら れている。本検討は、ASRによる膨張やひび割 れが発生した伊方発電所1号機タービン架台

(1975 年打設完了) について,地震荷重に対す る安全裕度を把握する検討の一環として,ASR が発生したコンクリート構造体としての弾性係 数を推定するために行ったものである。

本検討では、ASR が発生した1号機タービン 架台について実機振動試験(梁の上下方向加振 試験,架台の常時微動測定),弾性波測定試験及 びシミュレーション解析を実施した。なお,構 造及び形状がほぼ同じで、ASR の認められない 2号機タービン架台についても比較対象として 同様の試験・解析を実施した。

2. 実機振動試験

2.1 目的

1号機,2号機タービン架台の固有振動数, 振動モードを確認する目的で,実機振動試験を 実施した。又,過去の振動試験の結果と比較し, その経時変化を調べた。

2.2 起振機による梁の上下方向加振試験

(1) 試験方法

梁部材レベルの上下方向固有振動数及び振動 モードを把握するため,動電型起振機(最大加 振力 4900N)のスウィープ加振による梁の上下 方向加振を行った。

1号機,2号機共,加振及び測定はテーブル デッキ上5箇所及び1階の梁上5箇所で行った。 図-1にその一例を示す。各梁の加振では,振動

図-1 起振機・振動測定位置 (1 号機,テーブルデッキ上 2G2B 梁加振)

*1 大成建設(株) 設計本部特殊構造グループ シニアエンジニア 工修 (正会員)
*2 四国電力(株) 土木建築部建築技術グループリーダー
*3 四国電力(株) 土木建築部建築技術グループ 副長 工修
*4 大成建設(株) 技術センター技術企画部企画室 課長 工修

計は梁上の5点,基礎マット上の2点,起振機の振動子に設置し,加速度成分を測定した。

(2) 試験結果

各梁の加振時に測定した 7 点の加振力に対す る伝達関数を用いてモーダル解析を行い,固有 振動数,減衰定数及びモードシェイプを求めた。 モーダル解析によるカーブフィッティングの例 として 2GA 梁の中央点における結果を図-2 に 示す。固有振動数の選定にあたっては,伝達関 数において起振力に対する位相差が約π/2 とな る最小の振動数であること及び梁全体がほぼ 1 次モードで振動していることを基本条件とした。

試験により評価された固有振動数を過去の試験結果と比較して表-1に示す。1号機梁の固

_____フィッティングの例(1号機 2GA 梁)

表-1 モーダル解析による梁の固有振動数

			(単位:HZ, 括弧内は比率)			
階	梁方向	梁名	1 号機		2 号機	
			1989年	2003年	2003年	
	Х	2G1A	-	24.36	26.42	
				(0.92)	(1.00)	
		2G1B	-	28.00	31.87	
テーブル デッキ				(0.88)	(1.00)	
		2G2A	-	24.31	26.05	
				(0.93)	(1.00)	
		2G2B	30.08	28.59	32.20	
			(0.93)	(0.89)	(1.00)	
	Y	2GA	33.84	32.65	35.19	
			(0.96)	(0.93)	(1.00)	
1 階	Х	1G1A	58.03	55.32	59.57	
			(0.97)	(0.93)	(1.00)	
		1G1B	39.63	37.70	41.34	
			(0.96)	(0.91)	(1.00)	
		1G2A	49.11	48.93	53.51	
			(0.92)	(0.91)	(1.00)	
		1G2B	39.69	38.60	42.04	
			(0.94)	(0.92)	(1.00)	
	Y	1GF	46.39	46.06	48.68	
			(0.95)	(0.95)	(1.00)	

有振動数は、2号機に比べ 0.88~0.95 倍の値で あり、平均的に 10%程度の小さな値となってい る。1号機と2号機では、コンクリートの比重 に5%程度の違いあることが分かっている。1 号機と2号機の形状が全く同じとした場合、質 量とRC規準(5条)により算定されるコンクリ ートの弾性係数の関係を1質点系の固有振動数 の算定式に代入した場合、1号機の固有振動数 は2号機に比べ3%程度小さくなり、10%の中 にその影響も含まれていると考えられる。

また,1989 年から 2003 年までの 14 年間におけ る固有振動数の低下は小さいものとなっている。 2.3 架台の常時微動測定

(1) 測定方法

架台全体のスウェイ,ロッキングによる水平 方向の振動の固有振動数及び振動モードを把握 するため,常時微動測定を行った。

1号機,2号機とも、1ケースにつき12点の 同時測定を計5ケース実施し、テーブルデッキ 上の振動及び架台のスウェイ・ロッキング振動 を把握した。各ケースとも25分間程度の連続同 時測定を実施した。測定は変位成分とした。主 要な振動測定位置を図-3に示す。

(2) 測定結果

常時微動試験における最大変位分布を図-4 に示す。同図によれば基礎マット,地下1階間 の増幅は小さいが,地下1階(EL.4.2m)以上の水 平方向では上階ほど振幅が大きくなる1次モー ド的な分布を示している。この傾向は1号機, 2号機ともに同様であり、またX,Y両方向に

見られる。このことから、常時微動レベルでは、 タービン架台と周辺建屋間で連続している EL.4.2mの床スラブ等を介して周辺建屋からの 拘束を受けていることが示唆される。

基礎マット上の測定点を基準とした伝達関数 を用いてモーダル解析を行い,固有振動数,減 衰定数及びモードシェイプを求めた。モーダル 解析により推定したタービン架台の固有振動数 を過去の推定値と比較した結果を表-2に,振動 モードの例を図-5に示す。

2号機の2003年時を基準とすれば、1号機の 各方向の振動数は0.81~0.95倍の値を示してお り、Y方向高圧タービン側の方が低下の度合い が大きい。梁の上下方向加振で記載したように、 コンクリート比重の違いによる影響を3%程度

11	2 2	ーフル州	キリリート	의자미	07回,	日 111(1)))(1)
				(単位:]	Hz,括	弧内は比率)

測定	測定位置	1 号機		2 号機	
方向	例足位直	1989年	2003年	1991年	2003年
х	発電機側	5.45 (0.93)	5.26 (0.90)	5.71 (0.98)	5.83 (1.00)
	高圧タービン側	5.28 (0.91)	5.47 (0.94)	5.71 (0.98)	5.83 (1.00)
Y	発電機側	7.11 (0.88)	7.61 (0.95)	8.14 (1.01)	8.05 (1.00)
	高圧タービン側	7.95 (0.81)	8.65 (0.89)	8.86 (0.91)	9.77 (1.00)

注) 本図(2)に示す Y 方向のモードシェイプは、架台全体で評価 した場合の伝達関数へのフィッティングが良くなかったた めに、高圧タービン側の計測点のみを用いて再評価した結果 である。ただし、振動数は架台全体で評価した値を用いた。

図-5 モーダル解析による架台の固有振動数

とすれば、ASR の影響等による1号機の固有振 動数の低下は、2.5~8.5%程度であるものと推定 できる。

図-5 に示す固有振動数における架台の水平 方向振動モードにおいても、最大変位分布の場 合と同様に EL.4.2m における拘束の影響が認め られる。

3. 弾性係数測定試験

3.1 目的

1号機及び2号機タービン架台のコンクリー トの物性及びその分布を調べるために,架台の 各部位で弾性波速度測定を実施した。また,測 定の際に採取したコンクリートコアの表面状態 の観察を行った。

3.2 測定方法及び測定位置

測定は、検層法と透過法の2種類の方法で行った。測定概念図を図-6に示す。

2号機では 5 箇所で検層法及び透過法により 実施した。1号機では,5 箇所(No.1-No.5)で 検層法及び透過法により,7箇所(No.6-No.12) で透過法により実施した。図-7(a)に1号機の 測定位置を示す。

3.3 弾性係数の算定結果

図-7(b)に1号機の各位置での弾性係数の算 定結果を2号機の結果と併せて示す。検層法の No.2~No.4 においては、1号機及び2号機の弾 性係数は概ね近い値となっている。透過法につ いても、No.2~4 及び No.7~12 の弾性係数は、 概ね1号機と2号機で近い値となっている。し

図-7 測定位置及び測定結果

かし,検層法の No.1, 透過法の No.1 及び No.6, のテーブルデッキ部では,1号機の結果は他の 部位に比べて小さい値となっている。

3.4 採取したコンクリートコアの観察結果

No.1~No.5 において,採取したコンクリート コアの表面状態の観察を行った結果,No.1~ No.5 の全てのコアで反応の兆候が観察されたが, その割合はNo.1 について顕著であり,テーブル デッキより下部で採取したコアほど骨材の損傷 劣化の割合は小さいものとなっている。

4. 振動試験のシミュレーション解析

4.1 目的

シミュレーション解析により,振動試験結果 を適切に表現できるタービン架台を構成するコ ンクリート部材の弾性係数を推定した。

4.2 解析モデル

シミュレーション解析は、3次元 FEM モデル を用いて行った。タービン架台を構成する柱, 梁,壁,床について,ビーム要素又はシェル要 素でモデル化した。解析モデルを図-8 に示す。 4.3 EL.4.2m における拘束の影響

EL.4.2m 以下において, タービン架台とタービン建屋の躯体コンクリートは接している状態にあり, 図-5 に示す常時微動計測の結果から EL.4.2m で変形が拘束されたモード形が得られている。そこで, EL.4.2m 位置でのタービン建屋からの拘束の程度を把握するため, 図-9 に示す ように拘束無,ばね支持(ばね剛性は周辺部の 主要な構造部材である基礎梁の剛性から算定), 水平方向ピン支持の場合について解析を行い, 振動試験の結果を最もよく評価できる境界条件 について検討した。なお,この検討は,健全な 2号機タービン架台について行った。

各境界条件での固有値解析結果のうち,1次の 固有モード(X 方向モード)について,タービ ン架台両端部(発電機側,高圧タービン側)の 縦系列の変形分布(モーダル解析結果のテーブ ルデッキ部の値で正規化して表示)を詳細に比

図-10 変形モードの比較

較したものを図-10 に示す。解析結果から,比 較的振動計測の結果に近いばね支持を用いてシ ミュレーション解析を行うこととした。

4.4 振動試験のシミュレーション解析

(1) 梁の加振試験のシミュレーション解析

定常加振解析を行い,モーダル解析により推 定された固有振動数,振動モード,伝達関数と の一致の程度から弾性係数を算定した。

2号機タービン架台については,弾性係数は 架台全体で一律の値を与え,各梁に対して個別 に算定した。弾性係数測定試験から,1号機に おいてテーブルデッキ部で弾性係数の低下が顕 著であるという結果が得られているため,テー ブルデッキを ASR が発生している部材(以後, ASR 部材と呼ぶ)とする。弾性係数を算定する にあたり,健全部材に対する ASR 部材の弾性係 数比(ASR 部材/健全部材)を 0.5 (CASE1), 0.8 (CASE2), 1.0 (CASE3)に固定して,健全 部材及び ASR 部材の弾性係数を算定した。なお, 弾性係数比 0.5 及び 0.8 は既往の文献 1)~3)を参 考に設定したものである。

振動試験結果のモーダル解析により推定した 梁の固有振動数に一致するように,弾性係数を 調整したモデルの解析結果の一例(1号機ター ビン架台, CASE1, 2G2B梁)を図-11に示す。

50Hz 程度までの振動数域では、一致させた固 有振動数以外でもピークの位置に関しては、計 測値と解析値は概ね一致している。しかし、50H z 以上では対応がとれておらず、このモデルの 評価限界と考えられる。推定した弾性係数を次 項の(2)の結果と併せて図-13 に示す。

(2) 常時微動計測のシミュレーション解析

固有値解析を行い,モーダル解析により算定 された固有振動数,振動モードとの一致の程度 から弾性係数を算定した。なお,弾性係数は前 項の(1)と同じ扱いとした。

振動試験結果のモーダル解析による固有振動 数に一致するように,弾性係数を調整したモデ ルの振動モードのうち,CASE1の1次モードを 代表例として図-12に示す。なお,常時微動計 測のモーダル解析では別々に記録された3ブロ ックの記録を同時に記録されたものとして処理 しているが,1号機では良好なカーブフィッテ ィングが得られていない。従って,ここではテ ーブルデッキ部の動きに着目して一致の程度を 判断した。振動モードの形状は,振動計測結果 と解析結果は,概ね対応した結果となっている。 算定した弾性係数を前項の(1)の結果と併せて図 -13に示す。

図-11 加振力に対する伝達関数の比較 (2G2B 梁, CASE1)

図-14 算定した弾性係数のまとめ

(3)シミュレーション解析のまとめ

1号機と2号機タービン架台の算定した弾性 係数の全平均値について,ASR部材と健全部材 の弾性係数比と1号機(健全部材及びASR部材) の2号機に対する弾性係数の比の関係を図-14 に示す。採取されたコンクリートコアの単位体 積重量等を用いて RC 規準式(5条)により弾性 係数を算定すると,2号機に対する1号機の弾 性係数比(健全部材)は0.9となる。この関係を 図-14に当てはめた場合,ASR部材と健全部材 の比は0.5~0.6程度と推定される。なお、シミ ュレーション解析から求められた弾性係数は3 章の弾性係数測定試験の結果に比べ小さめの値 を示している。

5. まとめ

1号機と2号機タービン架台について各種試験 及び解析を行い、以下のような知見が得られた。 【実機振動試験】

- ・タービン架台の振動モードにおいて, EL.4.2 mにおいてタービン建屋からの拘束の影響が 認められる。
- ・振動試験による1号機タービン架台の固有振動数は健全である2号機に比較して低下がみられたが、1号機の経時変化やASRによる影響がタービン架台全体に与える影響は小さいものに収まっている。また、前回計測した1989年からの固有振動数の低下は小さく、ASRの進行はほとんどないものと考えられる。

【弾性係数測定試験】

1号機と2号機のタービン架台の弾性係数を
 比較すると、1号機テーブルデッキにおいて、
 弾性係数の低下が顕著である。

【実機振動試験のシミュレーション解析】

- ・EL.4.2mの拘束条件としてばね支持とした結果 が振動試験結果と比較的合うことが分かった。
- ・EL.4.2mをばね支持としたシミュレーション解 析から1号機の弾性係数について検討した結
 果, ASR 部材と健全部材の弾性係数比は 0.5 ~0.6程度と推定された。

本検討は四国電力(株)により設置された 「ASR 鉄筋コンクリート構造物の強度評価方法 検討会」(委員長:瀧口克己東京工業大学教授, 委員:桝田佳寛宇都宮大学教授,西口磯春神奈 川工科大学教授)のもとで,四国電力(株),三 菱重工業(株),大成建設(株)が実施した検討 の一部である。

参考文献

- 小柳洽,内田裕市ほか:低鉄筋比のRC部材 におけるASRの膨張拘束に関する研究,セメ ントコンクリート論文集,No.52, pp.786-791, 1998.
- 2) 矢村潔,長井吾朗ほか:ASR による損傷に 及ぼす鉄筋拘束の影響に関する研究,材料, Vol.43, No.491, pp.970-975, 1994.
- 棚橋和夫,岩永武士ほか:ASR によって劣 化した RC はりおよび柱の力学挙動について、 コンクリート工学年次論文報告集, Vol.18, No.1, pp.843-848, 1996.