論文 乾燥収縮が拘束されたコンクリートー軸供試体の応カー有効ひずみ 関係

佐藤 誠二^{*1}·下村 匠^{*2}

要旨:乾燥収縮が拘束された条件下におけるコンクリートの応力-有効ひずみ関係の性質を 検討するため、一軸拘束収縮試験体を用いて、乾燥途上に吸湿に転じる場合、拘束が解放さ れる場合の試験を行った。湿度による拘束応力の除荷過程では、応力-有効ひずみ関係が直 線的となること、有効ひずみが完全に回復しないことを明らかにした。コンクリートを拘束 している鋼材を取り除くことにより、乾燥収縮が拘束されたコンクリートの有効ひずみには、 瞬間弾性ひずみ、時間依存性回復ひずみ、非回復ひずみが含まれることを明らかにした。 キーワード:乾燥収縮、応力-有効ひずみ関係、一軸拘束収縮試験

1. はじめに

コンクリートは温度降下,水和反応,乾燥な どにより収縮する。自由な収縮が拘束されると, その度合いに応じてコンクリートには引張応力 および引張有効ひずみが徐々に導入される。こ れらが,コンクリートの引張強度または限界ひ ずみに達した時ひび割れが生じると考えられる。 収縮ひび割れを予測するためには,収縮が拘束 されたときのコンクリートへの応力および引張 有効ひずみの導入過程を正しく評価する引張変 形特性と,ひび割れ発生条件が必要である。

これらはコンクリートの時間依存性変形特性 と破壊条件に他ならないが,ここで重要である のは,対象とするコンクリートの収縮現象に応 じた時間スケール,水和による物性変化,内部 拘束の影響などを考慮した引張変形特性と破壊 条件が必要であることである¹⁾。これら個々の要 因の影響のしかたは,温度収縮,自己収縮,乾 燥収縮など対象とするコンクリートの収縮の種 類によって異なる。本研究は乾燥収縮に主眼を 置くものである。

この観点から青木は,乾燥収縮の収縮速度に 対応した時間スケール,乾燥の有無による内部 拘束の影響を実験パラメータに選び,コンクリ ートの時間依存性引張変形特性とひび割れ応力 を検討した²⁾。佐藤らはJIS一軸拘束収縮供試体に ひずみ制御装置を組み合わせて,乾燥収縮が拘 束された条件下における,応力の導入性状に関 する検討を行っている³⁾。しかし,時間スケール が短く,内部拘束の影響が排除できる自己収縮 に比べて,乾燥収縮に関するこの種の検討例は 多くないのが現状である⁴⁾。

本研究では、新たな試みとして、JIS 一軸拘束 収縮試験を応用して、乾燥途中に吸湿、および 物理的に拘束を解放する実験を行う。このよう にして、乾燥収縮が拘束され応力の導入過程に あるコンクリートを除荷過程に転じさせ、有効 ひずみに含まれる、瞬間弾性ひずみ、塑性ひず み、回復クリープ(遅れ弾性ひずみ)を実験的 に抽出し、検討する。

2. 実験概要

2.1 実験シリーズ

乾燥収縮が断続的に拘束されたコンクリート 供試体の拘束条件および乾燥条件を変化させる 一軸拘束収縮試験を行った。各供試体の実験の 流れを表-1に示す。供試体数は,各試験1体ず つとした。

 *1 長岡技術科学大学大学院
 工学研究科建設工学専攻
 (正会員)

 *2 長岡技術科学大学助教授
 工学部環境・建設系
 博士(工学)
 (正会員)

実験に用いたコンクリートの配合および使用 材料を表-2に示す。コンクリート打設時には、 バイブレーターによる締固めを行った。一軸拘 束収縮試験,自由収縮試験の供試体は、打設後、 ポリエチレンシートを用いて乾燥を防ぎ、室温 20℃の室内に静置した。24時間後に脱型し、直 ちに供試体全面をアルミテープでシールし、再 び同室内で材齢23日まで静置した。比較的長い 養生期間としたのは、乾燥期間中の水和の進行 によるコンクリートの剛性・強度の変化を極力 小さくするためである。

2.2 乾燥途中で吸湿させる一軸拘束収縮試験

NR 供試体, MS 供試体は, 図-1 に示す JIS 一軸拘束収縮試験体を用いる。本試験は, コン クリートの乾燥収縮ひび割れ抵抗性を評価する 試験として広く用いられており, コンクリート 供試体の軸方向の収縮を, 左右に配した鋼材に より外的に一軸線拘束し, 試験区間に断面を貫 通するひび割れを発生させるものである。

試験区間のコンクリート断面の応力と平均ひ ずみを測定するため,拘束鋼材の軸方向ひずみ を基長 5mmのひずみゲージにより,コンクリー ト打設直後より 6 時間間隔で測定した。また, 試験区間の打設面および底面にゲージプラグを 取り付け(基長 300mm),コンタクトゲージによ りコンクリート表面の平均ひずみを乾燥開始時 より測定した。

NR 供試体の試験条件は, 乾燥開始から試験区 間が破断するまで一定環境(温度 20±1℃, 湿度 60±5%)の室内で乾燥させる一般的な一軸拘束 収縮試験に準じた。

MS供試体は、まず、NR供試体と同じ温度 20

表-2 コンクリートの配合および使用材料

W/C	s/a	単位量(kg/m ³)							
(%)	(%)	W	С	S	G	Ad1	Ad2		
55.0	45.1	165	300	804	1037	0.75	0.90		

W:水道水

C:普通ポルトランドセメント(密度 3.16g/cm³) S:細骨材(密度 2.62g/cm³)

G:粗骨材(密度 2.78g/cm³,最大寸法 20mm)

Ad1:AE 減水剤

Ad2: AE 剤(100 倍希釈)

±1℃,湿度 60±5%の環境で乾燥させ,コンク リートの引張応力が 1.5MPa に達したときに,供 試体を高湿度環境下に置くことで,コンクリー トを吸湿膨張させ,収縮の拘束の除荷挙動を検 討する試験体である。高湿度環境は,立てた状 態の一軸拘束収縮供試体が入る大きさの空間の 骨組みを恒温室内に塩ビ管で作製し,上からビ ニールシートをかぶせて作った。ビニールシー ト内には水を張ったバットを置き,湿らせた布 を吊るすことで高湿度環境を作り出した。試験 中のビニールシート内部は,温度 19±1℃,平均 湿度は約 97%であった。

ー軸拘束収縮試験と並行して,角柱供試体(断面 100×100mm,長さ400mm)を用いて自由収縮を測定した。自由収縮ひずみの測定はコンタクトゲージにより行い,基長は300mmとした。乾燥条件は,対応する一軸拘束収縮試験体と同じとした。

2.3 拘束を途中解放する一軸拘束収縮試験

BS 供試体は, MS 供試体と同じ環境で乾燥させ, コンクリートの引張応力が 1.5 および 2.5 MPa

図-1 一軸拘束収縮試験体 図-2 BS 供試体定着区間

に達したときに、コンクリートを一軸拘束して いる鋼材を取り除くことにより瞬間的に除荷し, 除荷時の挙動を検討する試験体である。この試 験体は, 乾燥期間中にコンクリートから拘束鋼 材を取り外すことができるように JIS 一軸拘束 収縮試験体の定着区間に工夫を施したものであ る。コンクリートと拘束鋼材を直接定着させず に、両者間に厚さ約4mmの鋼板を挟んでいる(図 -2)。鋼板には ϕ 9mm の丸鋼を JIS 試験体と同 じ間隔で各5本溶接し、打設時よりコンクリー トと定着させる。コンクリート打設時には鋼板 と拘束鋼材は4箇所においてボルトとナットで 接合しておく。乾燥期間中の任意の時点でナッ トを外すことで、試験体から拘束鋼材のみを取 り外すことができる。供試体の寸法・形状およ び鋼材の断面積などの定着区間以外の部分は, 図-1に示す JIS 試験体と同じである。

本試験体は、予備実験により鋼板と拘束鋼材 とのすべりがなく、通常のJIS 一軸拘束収縮試験 と同じ拘束状態が得られることを確認した。ま た、任意の時点において供試体から比較的容易 に拘束鋼材を取り外せることも確認した。拘束 鋼材除去後の試験体の状況を図-3 に示す。

3. 実験結果

3.1 応力と有効ひずみの算出法

実験結果より一軸拘束収縮供試体のコンクリ ートの応力は次式で求める。

$$\sigma = -\frac{A_s}{A_s} E_s \varepsilon_s \tag{1}$$

図-3 鋼材除去後状況

ここに、 σ : 試験区間のコンクリート断面の応 力、 A_s : 拘束鋼材の断面積、 A_c : 試験区間のコン クリートの断面積、 E_s : 拘束鋼材の弾性係数、 ϵ_s : 拘束鋼材のひずみである。

コンクリートの有効ひずみは次式で求める。

$$\varepsilon_e = \varepsilon_c - \varepsilon_{sh} \tag{2}$$

ここに, ε_e: 試験区間のコンクリートの有効ひ ずみ, ε_c: 試験区間のコンクリートのひずみ, ε_{sh}: 自由収縮供試体のひずみである。なお, 試 験区間のコンクリートのひずみのかわりに拘束 鋼材のひずみを用いることがある。ただし, 鋼 材を途中で取り外す試験体の場合, コンタクト ゲージにより測定したコンクリートのひずみを 用いなければならない。

-511-

3.2 乾燥途中で吸湿させる一軸拘束収縮試験

(1) ひずみおよび応力の経時変化

NR および MS 供試体の拘束鋼材のひずみ,自 由収縮ひずみの経時変化およびコンクリートの 応力の経時変化を図-4 および5に示す。

乾燥開始前から自己収縮により徐々に応力が 導入され,乾燥開始時において約0.7MPaとなっ ている。乾燥開始後,3日でコンクリートの応力 が約1.5MPaとなったため,乾燥環境を高湿度環 境に変更した。その環境下では,拘束鋼材およ び自由収縮ひずみの値は徐々に減少した。つま り,乾燥による収縮過程から,吸湿による膨張 過程に移行した。

吸湿 25 日で MS 供試体の自由収縮ひずみは乾燥開始時まで回復した。鋼材のひずみは乾燥開始時よりも小さい値まで回復し、ゼロに近づいている。

(2) 応力-有効ひずみ関係

NR および MS 供試体の応力-有効ひずみ関係 を図-6 に示す。なお,拘束鋼材のひずみは打設 時より計測しているが,自由収縮ひずみは材齢9 日から測定を開始したため,それ以前の有効ひ ずみはゼロとして描いている。

乾燥による応力導入過程では応力-有効ひず み関係は直線的となっている。これは既往の研 究においても見られる傾向である。青木²⁾は,一 軸拘束収縮試験で観察されるコンクリートの引 張有効弾性係数は,瞬間的な引張弾性係数の0.5 ~0.8 倍程度になることを明らかにしている。

乾燥環境変化後,吸湿による除荷過程におい ても応力-有効ひずみ関係は直線的な経路をた どっている。その傾きは乾燥時よりも大きい。 また原点を指向せず,応力がゼロに漸近しても 残留ひずみが存在する傾向を示している。本供 試体の除荷過程は,瞬間的ではなく吸湿により ゆっくりと行なわれているため,除荷により回 復するひずみには,瞬間成分と時間依存性成分 が含まれている。したがって,応力がゼロに漸 近したときの残留ひずみは非回復成分がほとん どであると考えられる。乾燥収縮の拘束による

持続載荷によって,非回復の引張ひずみが導入 されていることが示唆される。

これは、持続引張と乾燥収縮の内部拘束によ る非回復の損傷によるものと考えられる。ただ し、乾燥過程と吸湿過程とではコンクリート断 面内部のひずみ分布、応力分布が異なることに よりもたらされる断面レベルの非可逆性が影響 している可能性もある。

3.3 拘束を途中解放する一軸拘束収縮試験

(1) ひずみおよび応力の経時変化

NR, BS1.5 および BS2.5 供試体の拘束鋼材の ひずみ,自由収縮ひずみの経時変化およびコン クリートの応力の経時変化を図-7および8に示 す。一軸拘束収縮試験体の定着部分を脱着可能 とした BS 供試体の鋼材ひずみー材齢関係は通 常の一軸拘束収縮試験体 (NR 供試体)のそれと よく一致しており,今回作製した一軸拘束試験 体型枠が,コンクリートの収縮を十分に拘束し ていることが確認できる。

BS1.5 および BS2.5 供試体の試験区間のコンク リートの実ひずみは,一軸収縮拘束試験体の打 設面および底面のひずみをコンタクトゲージに より測定し,2つの測定値を平均している。拘束 鋼材除去(除荷)以前については,拘束鋼材の ひずみとコンクリートのひずみはよく一致して いる。

拘束ひずみを除去時,瞬間的にコンクリート のひずみが増大し,その後時間とともに漸増し ている。瞬間的なひずみの増大は拘束応力が解 放されることによる弾性成分で,時間とともに 漸増する成分は時間依存性回復成分と自由収縮 が含まれている。コンクリートに作用する応力 が大きくなるほど瞬間的に回復する弾性ひずみ も大きくなっていることがわかる。

(2) 応カー有効ひずみ関係

NR, BS1.5 および BS2.5 供試体の有効ひずみ ー材齢関係を図-9 に示す。BS 供試体について は,有効ひずみの計算には実ひずみの値を用い ることで拘束鋼材除去後のコンクリートの有効 ひずみを算出した。除荷直後瞬間的に回復する 弾性ひずみが,その後時間に依存する回復ひず み,最終的には非回復の残留ひずみが残ること が分かる。つまり,従来一軸拘束収縮試験体の 有効ひずみとして観察していたひずみには,こ れらの成分が含まれていたということが今回実 験的に明らかとなった。

コンクリートに導入された応力が大きいほど、 瞬間ひずみおよび残留ひずみは大きい結果とな

った。しかし、本実験結果では、時間依存性回 復ひずみに、応力の違いによる明確な差は認め られなかった。

NR, BS1.5 およびBS2.5 供試体の応力-有効ひ ずみ関係を図-10 に示す。また,BS供試体の除 荷前後の有効ひずみ・応力の測定結果および除 荷剛性を表-3 に示す。供試体の除荷剛性は,除 荷時の応力が大きいBS2.5 は応力の小さいBS1.5 と比較するとおよそ 5000MPa小さい値となった。 過去に受けた最大応力や最大ひずみが大きいほ ど除荷剛性が小さくなるのは、コンクリートの 変形性状において一般的に認められる傾向であ る⁵⁾。本実験結果は、乾燥収縮が持続的に拘束さ れる条件下にあるコンクリートの変形現象にお いても、この傾向が認められることを示してい る。

表-3 BS 供試体の除荷前後の応力・有効ひず みおよび除荷剛性

供試体	除荷前	除荷後	除荷前	除荷後	除荷剛
	εγ	ε _y	σ _c	σ _c	性
Ą	(µ)	(µ)	(MPa)	(MPa)	(MPa)
BS1.5	65.5	33.3	1.58	0	49070
BS2.5	130.1	71.9	2.61	0	44850

4. まとめ

乾燥収縮が拘束されたコンクリートー軸拘束 供試体の拘束条件および乾燥条件を変化させる 実験を行い,以下の知見を得た。

- (1)乾燥途中において環境を湿度 60%から 100% に変化させることにより,乾燥収縮から吸湿 膨張に転じるが,自由収縮ひずみは完全には 回復しない。
- (2)吸湿膨張による除荷過程では,直線的な応力 - 有効ひずみ関係が観察された。
- (3)乾燥収縮が拘束されたコンクリートの有効ひ ずみには、除荷時に瞬間的に回復する弾性ひ

ずみ成分,時間依存性回復ひずみ成分,非回 復ひずみ成分が含まれることが明らかとなっ た。持続載荷されたコンクリートに導入する 応力が大きいほど,除荷時の瞬間ひずみおよ び残留ひずみは大きくなる。

(4)除荷前に受けていた応力が大きいほど,除荷 剛性が小さいこと,除荷時の残留ひずみが大 きいことが明らかとなった。時間依存性回復 ひずみに及ぼす応力の影響は,本実験の範囲 では明確には認められなかった。

謝辞

本実験を行うにあたり,木更津工業高等専門 学校環境都市工学科青木優介講師に,試験方法, 型枠の組立て方法など,度重なるご助言を頂き ました。ここに記して深く感謝いたします。

参考文献

- 下村 匠: コンクリート部材・構造物の収縮 応力解析, コンクリート工学, Vol.43, No.5, pp.56-59, 2005.5
- 2) 青木優介,下村 匠:乾燥収縮ひび割れ抵抗 性評価のためのコンクリートの引張変形特 性およびひび割れ発生条件に関する検討,土 木学会論文集,No.732/V-59,pp.135-148, 2003.5
- 3) 濱永康仁,佐藤嘉昭,上田賢司,清原千鶴: ひずみ制御機能を備えた収縮ひび割れ試験 装置の開発,コンクリート工学年次論文集, Vol.26, No.1, pp.519-524, 2004
- 丸山一平,朴 宣圭,野口貴文:疑似完全拘 東実験による若材齢コンクリートの時間依 存的力学特性,コンクリート工学年次論文集, Vol.24, No.1, 2002
- 5) 岡村 甫・前川宏一:鉄筋コンクリートの非 線形解析と構成則,技報堂出版,1990