論文 コンクリートの爆裂現象に関する実験的研究

王 若平*1・川上 寛正*1・小澤 満津雄*2・森本 博昭*3

要旨:本研究では,高強度コンクリートを対象とし,含水状態の異なる湿潤・気乾の2種類の供試体について耐火試験を実施し,加熱供試体中に生じる温度と蒸気圧の計測を試みた。 その結果,爆裂発生前後で蒸気圧の急増と減少,ならびに爆裂過程における温度ひび割れの 発生を観測した。これらのことから,爆裂は,温度応力による大きな圧縮応力場に局部的な 蒸気圧上昇が生じて発生するが,その際,温度ひび割れが爆裂の発生,進展に大きな影響を およぼすものと考えられる。

キーワード:火災,爆裂,蒸気圧,蒸気圧応力,温度応力

1. はじめに

コンクリートは火災による高温加熱を受けた 場合,急激な応力の発生に伴いコンクリート表 面が爆発的に剥離するいわゆる爆裂現象を起す。 爆裂は,火災時の加熱による部材の温度の急上 昇に伴うコンクリート内水分の蒸気圧応力の増 大,および熱応力に起因し,これらの応力の複 合作用により爆裂が発生するものと考えられて いる。しかし,熱応力と蒸気圧応力による爆裂 メカニズムについては確たる結論が得られてい ないのが現状である¹⁾²⁾³⁴⁾。特に蒸気圧の爆裂に 対する影響は十分に明らかにされていない。そ こで,本研究では,コンクリートの爆裂現象の メカニズムを解明するための基礎的資料を得る 目的で,高強度コンクリートを対象とし,含水 状態の異なる湿潤・気乾の2種類の供試体につ いて耐火試験を実施し,加熱供試体中に生じる 温度と蒸気圧の計測を試みた。そして,これら の計測値と供試体に生じるひび割れ,ならびに 爆裂の発生との関連について考察を行った。

2. 実験概要

表-1 に供試体の種類を示す。供試体の種類は 加熱面付近の水分量が爆裂に及ぼす影響を検討 するために,湿潤供試体と気乾供試体の2種類 とした。供試体数は各2体づつ合計4体とした。 供試体寸法は,400×400×100mmとした。供試 体は材齢2日で脱型した。湿潤供試体は温度

表-1 供試体の種類

供ぎけの話粉	供試体寸法	供試体数	25日圧縮強度	
浜武体の種類	(mm)	(体)	(N/mm^2)	
湿潤	100+100+100	2	65	
気乾	100*400*400	2	61.9	

表-2 示方配合

Gmax	スランプ	Air	W/C	s/a	単位量(kg/m3)				
(mm)	(cm)	(%)	(%)	(%)	W	С	S	G	Ad
25	7.0	3.5	30.0	44.1	132	440	793	1005	22
Ad:高性能 AE 減水剤									

*1 岐阜大学大学院 工学研究科 土木工学専攻 学生 (正会員)

*2 岐阜大学 工学部社会基盤工学科助手 博士(工学) (正会員)

*3 岐阜大学 工学部社会基盤工学科教授 工博 (正会員)

20℃一定の養生室で 25 日間,湿布養生を行った。 気乾供試体は養生室内で18日間,湿布養生を行 い, その後7日間, 環境試験室内(温度:20℃, 湿度:40%)に放置した。養生中の水分変化量 を見るために,養生条件を同一とした円柱供試 体(φ 10×20cm)の重量変化を計測した。コンク リートの示方配合を表-2に示す。コンクリート の種類は、既往の研究¹⁾において、高温加熱に よる爆裂現象が発生しやすいとされる高強度コ ンクリートとした。W/Cは30%とし、セメント は早強セメントを使用した。粗骨材の最大寸法 は 25mm とした。表-1 に材齢 25 日の圧縮強度 試験結果を示す。図-1に実験装置を示す。図よ り、供試体中に蒸気圧計測用鋼管(外径 3mm, 内径 2mm,長さ 200mm)を,鋼管内部の温度を 均一に上昇させるために加熱面に対して平行に 埋設した。また、鋼管内には、コンクリートの 蒸気圧の計測が容易となるように圧力媒体とし てモーターオイルを充填した。蒸気圧測定位置 は加熱面(下底面)から 5mm と 10mm とした。 蒸気圧は鋼管他端に取り付けた圧力計(K 社 製: PHB-A-2MP 計測許容値: 2MPa)により計測 した。供試体内部の温度は熱電対により計測し た。温度計測位置は蒸気圧計測位置と同じく加 熱面(下底面)より 5mm, 10mm の 2 箇所とし, 鋼管先端部付近に熱電対を設置した。供試体の 加熱には電気炉を用いた。電気炉は容量電圧 200V, 最大電流 28A の鉄ニクロム線を9本用い た装置である。図中のパンチングシートは、剥 離したコンクリートにより鉄ニクロム線を断線 させないために設置した。加熱面は下底面 350 ×350mmの範囲とした。加熱条件は,図-2 に 示すように 1200℃/hr とし、1200℃に達した後 はヒーター電源を遮断して除冷するものとした。 ただし、加熱段階で爆裂により鋼管内の蒸気圧 が抜けるか、爆裂が大量に発生し危険と判断さ れた時点で加熱を中断して除冷を行った。写真 -1に実験中の供試体を示す。

写真-1 供試体概要

ζÛ

寠

迥

をり

3. 実験結果

3.1 供試体中の湿度分布

湿潤供試体は実験直前まで湿布養生をしてい るため、水分飽和状態であると考えられる。一 方、気乾供試体は材齢 18 日から 7 日間、湿度 40%の乾燥環境下に放置した。供試体の乾燥状 態を把握するため、湿気移動解析 ⁵⁾を実施し、 気乾供試体の湿度分布の推定を行った。図-3 に 温度 20℃,相対湿度 40%で 7 日間乾燥した後の 気乾供試体の下面から深さ方向の相対湿度分布 を示す。図より、供試体表面付近では、相対湿 度は 57%程度まで乾燥が進行し、深さ 30mm 程 度まで乾燥状態であることが推定できる。なお、 養生期間中の円柱供試体からの水分損失量は、

湿潤供試体が 0.7g程度であり,気乾供試体は 2.7g程度であった。

3.2 蒸気圧計測の校正曲線

コンクリートの耐火試験に先立ち,鋼管内部 の媒体(オイル)の蒸気圧計測に及ぼす影響を 検討するために,鋼管内にオイルを充填し鋼管 の直接加熱試験を実施した。その結果より,加

図-3 湿度分布(解析結果)

熱によるオイルの体積膨張により発生する圧力 の検討を行った。図-5 に鋼管内部の圧力と炉内 温度との関係を示す。加熱により発生する媒体 の圧力は,温度とほぼ比例関係にあり,約200℃ で 0.1MPa となった。本実験では、この校正曲 線をもとに蒸気圧の実測値の補正を行った。

3.3 耐火性実験結果

湿潤供試体① の温度の実測値を図-5,蒸気圧 の実測値を図-6 に示す。加熱開始から 38 分後 に供試体側面の鋼管付近にひび割れが発生した。 図-5 から,その時点での 5mm~10mm における 温度は,140℃~160℃の範囲であった。そして, 加熱開始後 40 分,5mm の温度が約 180℃に達 した時点で最初の爆裂が発生し,同 42,43,44, 45,47,48,49,50,52,53 分に大小の爆裂が 断続的に発生した。同 57 分,爆裂により供試体 側面が剥離して電気炉が剥き出しになり危険と なったため実験を終了した。図-5 から,爆裂が 断続的に発生した時期に温度がピークを示した 後に,一時的に低下する傾向が見られた。これ は爆裂による水分が噴出したためと考えられる。

図-5 内部温度の実測値(湿潤①)

図-6 蒸気圧の実測値(湿潤①)

一方, 図-6 から, 5mm の蒸気圧は大きな爆 裂が発生する直前から急増し爆裂直前に 0.22MPa に達したが、爆裂発生とともに急減し た。これに対して、10mmの蒸気圧は大きくは 上昇しなかった。これらのことから, 蒸気圧の 上昇は、かなり局部的な現象であることが推察 される。次に,湿潤供試体②の温度の実測値お よび蒸気圧の実測値を図-7,8に示す。加熱開始 から30分を過ぎ温度が100℃を超えた頃から蒸 気圧が増加し始め、同40分供試体側面にひび割 れが発生した。そして、同41分最初の爆裂が発 生した。その後,同 42,43,44,45,47,48, 49, 50, 52 分に大小の爆裂が断続的に発生した。 同 45 分の爆裂の際には爆裂発生と同時にひび 割れが発生した。この時点での 5mm の蒸気圧 のピーク値は 0.17MPa, 10mm では 0.11 MPa で あった。その後, 蒸気圧は再上昇の傾向を示し たが、同 53 分 5mm、10mm の鋼管内の圧力が 共に下がってきたため実験を終了した。以上の ように,湿潤供試体②の爆裂過程は,湿潤供試

体①と類似の結果を示した。ただし,計測され た蒸気圧は大きく異なるものであった。

気乾供試体①の温度の実測値および蒸気圧の 実測値を図-9,10に示す。加熱開始から39.5分, 供試体側面の鋼管の付近にひび割れが発生した。 そして,同43分最初の爆裂が発生した。同45, 47 分に大きな爆裂が発生した。その後 47.5 分に 実験を終了した。図-9から,温度上昇は湿潤供 試体と大きな差異はない。一方,図-10から, 10mm の蒸気圧は、温度が 100℃を超えた頃か ら次第に増加し始め,大きな爆裂発生時に 0.24MPa のピークとなった後、急減した。一方, 5mmの蒸気圧は、10mmより早い段階で増大し 始めたが,途中の段階で急激に減圧した。減圧 の原因としては、ひび割れによる蒸気の抜け、 あるいはオイルの抜けなどが考えられる。爆裂 過程については、蒸気圧の急増をともなう点に おいては、湿潤供試体と同様であるが、気乾供 試体①では爆裂の回数が少なく,大きな爆裂が 突然発生して表面部が一気に剥離して終了する

図-11 温度の実測値(気乾2)

点が特徴的であった。

気乾供試体②の温度と蒸気圧の実測値を図-11,12に示す。加熱開始から38分後に供試体側 面にひび割れが発生した。その後,同41,43 分小さい爆裂が発生した。同45分蒸気圧が計測 器の計測範囲をオーバーしたため実験を終了し た。図-11から,温度上昇の傾向は他の供試体 と大差はない。一方,図-12から,10mmの蒸 気圧は100℃を過ぎたあたりから,急激に増大 し,爆裂までには至らなかったが最終的には 2.4MPa付近にまで達した。一方,5mmの蒸気 圧は最大 0.3MPa程度であった。この様な結果 から,蒸気圧は局部的には2.4MPa以上の大き な値となるものと推察される。

3.4 爆裂による加熱面の剥離深さ

写真-2 に加熱面の剥離状況の一例を示す。写 真から,爆裂は加熱面全面に発生していた。図 -13,14 に湿潤供試体①と気乾供試体①の爆裂 による剥離深さのコンター図(平面分割 50mm ピッチ)を示す。湿潤供試体①の最大剥離深さは, 17.4mm,気乾供試体①では 14.1mm であった。

写真-2 爆裂状況の一例(湿潤①)

図-13 爆裂による加熱面の剥離深さ (湿潤供試体①) (単位:mm)

表-3 最大剥離深さおよび平均剥離深さ

	最大剥離深さ (mm)	平均剥離深さ (mm)
湿潤1	17.4	7.5
湿潤2	22.8	9.6
気乾1	14.1	4. 9
気乾2	4. 4	0. 4

各供試体の最大剥離深さおよび平均剥離深さを まとめて表-3に示す。これらの結果から、湿潤 供試体の方が気乾供試体に比べて剥離深さが大 きくなる傾向にあった。

4. 爆裂発生のメカニズム

各供試体の爆裂に至る過程は、温度上昇にと もない、まず温度ひび割れが発生する。その後 まもなくして,加熱面近傍の蒸気圧が局部的に 急増してその箇所に爆裂が発生する。計測され た蒸気圧は最大で 2.4MPa に達した。爆裂が発 生すると近傍の蒸気圧は急激に減圧するが、爆 裂あるいはひび割れの状況によっては再度上昇 する場合もある。温度ひび割れは、蒸気圧の集 中を引き起こすが、逆に蒸気圧を開放する場合 があると考えられる。加熱面近傍では、高温と なるため内部拘束による温度応力の大きな圧縮 応力場にあるが,局部的な蒸気圧上昇が生じて その部分が爆発的に剥離、進展していくことが 爆裂のメカニズムであると考えられる。以上の ような過程が繰り返されて,爆裂の深さと範囲 が次第に増大して行くものと推察される。

湿潤状態の供試体は,表面部から小さな爆裂 を繰り返し,最終的には爆裂深さが20mm 以上 に達した。一方,気乾状態の供試体では表面部 からある程度内部に入った部分の蒸気圧が急増 して一気に爆裂が発生し,結果としてそれ以上 は深さ方向に進展しなかったものと解釈できる。

5. まとめ

本研究では,高強度コンクリートを対象とし, 含水状態の異なる湿潤・気乾の2種類の供試体 について耐火試験を実施した。実験により爆裂 発生前後で蒸気圧の急増と減少,ならびに爆裂 過程における温度ひび割れの発生を明らかにし た。実験結果を総合すると,加熱面近傍では, 高温となるため内部拘束による温度応力の大き な圧縮応力場にあるが,局部的な蒸気圧上昇が 生じてその部分が爆発的に剥離,進展していく ことが爆裂のメカニズムであると考えられる。 その際,温度ひび割れが爆裂の発生、進展に大 きな影響をおよぼすものと考えられる。このよ うに,爆裂現象はかなり不確定要因を含んだ現 象であると考えられるので,現象を予測するた めにはそのメカニズムを考慮した単純化した解 析モデルの構築が必要であると考える。

謝辞

本研究を実施するにあたり、日本インシュレ ーション(株)小川晴久氏から多大なご協力を頂 いた。ここに謝意を表する。

参考文献

- 1) 土木学会:コンクリート構造物の耐火性技 術研究小委員会報告ならびにシンポジウム 論文集,土木学会,コンクリート技術シリ ーズ, No.63, 2004
- L.T.Phan: High-Strength Concrete at High Temperature An Overview, Utilization of High Strength/High Performance Concrete, 6th International Symposium. Proceedings. Leipzig, Germany, Konig, G; Dehn, F; Faust, T., Editor(s), Vol.1, pp.501-518, 2002
- 一瀬賢一,丹羽博則,長尾覚博:火災時の 鉄筋コンクリート柱内部の熱・水分移動に 関する実験的研究,日本建築学会構造系論 文集,第 553 号,pp.7-12,2002,3
- S.Dal Pont, H.Colina, A.Dupas and A.Ehrlacher : An experimental relationship between complete liquid saturation and violent damage in concrete submitted to high temperature, Magazine of Concrete Research, 57,No.8,pp.455-461,Oct. 2005,
- 5) 堀部謙, 森川友博, 中村恭香, 森本博昭: コンクリート中の水分移動解析手法につい て, コンクリート工学年次論文集, Vol.26, No.1, pp.603-608,2004